Atmospheric pressure microwave microplasma microorganism deactivation

被引:14
|
作者
Czylkowski, D. [1 ]
Hrycak, B. [1 ]
Jasinski, M. [1 ]
Dors, M. [1 ]
Mizeraczyk, J. [1 ,2 ]
机构
[1] Polish Acad Sci, Ctr Plasma & Laser Engn, Szewalski Inst Fluid Flow Machinery, PL-80952 Gdansk, Poland
[2] Gdynia Maritime Univ, Dept Marine Elect, PL-81225 Gdynia, Poland
来源
关键词
Microwave plasma; Atmospheric pressure plasma; Microplasma; Decontamination; Sterilization; MICROSTRIP TECHNOLOGY; PLASMA STERILIZATION; INACTIVATION; DISCHARGE; JET; GENERATION;
D O I
10.1016/j.surfcoat.2013.04.010
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper is focused on the experimental investigations of microorganism decontamination by using low temperature Ar and Ar/O-2 microwave microplasma. Microplasma in the form of a microflame was generated using a simple coaxial microwave microplasma source (MmPS). The MmPS was operated at standard microwave frequency of 2.45 GHz. The electron density, microplasma temperatures and active species identification were determined on the way of Optical Emission Spectroscopy. The results of the spectroscopic measurements confirmed the MmPS usefulness in biomedical applications. The microplasma deactivation concerned two types of bacteria (Escherichia coli, Bacillus subtilis) and one fungus (Aspergillus niger). The investigations involved influence of the O-2 concentration, absorbed microwave power, microplasma treatment time and microplasma distance from the treated sample on the microorganism deactivation efficiency. All reported results were obtained for Ar and Ar/O-2 microplasma with gas flow rates of single l/min and O-2 admixture not exceeding 2%. The absorbed microwave power was up to 50 W. The sample treatment time was up to 10 s. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 119
页数:6
相关论文
共 50 条
  • [21] Hydrophobic coatings deposited with an atmospheric pressure microplasma jet
    Vogelsang, Andreas
    Ohl, Andreas
    Foest, Ruediger
    Schroeder, Karsten
    Weltmann, Klaus-Dieter
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (48)
  • [22] Nitric oxide generated by atmospheric pressure air microplasma
    Matsuo, Keita
    Yoshida, Hidekazu
    Choi, Jaegu
    Hosseini, S. Hamid R.
    Namihira, Takao
    Katsuki, Sunao
    Akiyama, Hidenori
    2009 IEEE PULSED POWER CONFERENCE, VOLS 1 AND 2, 2009, : 996 - 1000
  • [23] Electron and ion kinetics in a DC microplasma at atmospheric pressure
    Choi, Jun
    Iza, Felipe
    Lee, Jae Koo
    Ryu, Chang-Mo
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2007, 35 (05) : 1274 - 1278
  • [24] Heat transport of nitrogen in helium atmospheric pressure microplasma
    Xu, S. F.
    Zhong, X. X.
    APPLIED PHYSICS LETTERS, 2013, 103 (02)
  • [25] Capacitively coupled microplasma source on a chip at atmospheric pressure
    Yoshiki, H
    Horiike, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2001, 40 (4A): : L360 - L362
  • [26] Individual ignition of RF microplasma array at atmospheric pressure
    Martinet, David
    Filliger, Sebastian
    Germanier, Alain
    Gugler, Gilbert
    Ellert, Christoph
    PLASMA PROCESSES AND POLYMERS, 2023, 20 (02)
  • [27] INTERACTIONS OF ATMOSPHERIC PRESSURE PLASMA JETS AND MICROORGANISM: INACTIVATION
    Tanisli, Murat
    Mutlu, M. Burcin
    Poyraz, Nilgun
    Sahin, Neslihan
    Demir, Suleyman
    FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (03): : 1574 - 1582
  • [28] A microfabricated atmospheric-pressure microplasma source operating in air
    Hopwood, J
    Iza, F
    Coy, S
    Fenner, DB
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (11) : 1698 - 1703
  • [29] Mass spectrometric diagnosis of an atmospheric pressure helium microplasma jet
    McKay, K.
    Oh, J-S
    Walsh, J. L.
    Bradley, J. W.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (46)
  • [30] Characterisation of a 3 nanosecond pulsed atmospheric pressure argon microplasma
    Walsh, J. L.
    Iza, F.
    Kong, M. G.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 60 (03): : 523 - 530