Measuring biological diversity using Euclidean metrics

被引:115
|
作者
Champely, S [1 ]
Chessel, D
机构
[1] Univ Lyon 1, Dept Sports, F-69622 Villeurbanne, France
[2] Univ Lyon 1, UMR 5558, F-69622 Villeurbanne, France
关键词
Euclidean metrics; multidimensional scaling; Rao's dissimilarity coefficient; Rao's diversity coefficient;
D O I
10.1023/A:1015170104476
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We study the complementary use of Rao's theory of diversity (1986) and Euclidean metrics. The first outcome is a Euclidean diversity coefficient. This index allows to measure the diversity in a set of species beyond their relative abundances using biological information about the dissimilarity between the species. It also involves geometrical interpretations and graphical representations. Moreover, several populations (e.g., different sites) can be compared using a Euclidean dissimilarity coefficient derived from the Euclidean diversity coefficient. These proposals are used to compare breeding bird communities living in comparable habitat gradients in different parts of the world.
引用
收藏
页码:167 / 177
页数:11
相关论文
共 50 条
  • [31] Measuring the Impact of Research Using Conventional and Alternative Metrics
    Knowlton, Sasha E.
    Paganoni, Sabrina
    Niehaus, William
    Verduzco-Gutierrez, Monica
    Sharma, Raman
    Iaccarino, Mary A.
    Hayano, Todd
    Schneider, Jeffrey C.
    Silver, Julie K.
    AMERICAN JOURNAL OF PHYSICAL MEDICINE & REHABILITATION, 2019, 98 (04) : 331 - 338
  • [32] Measuring the complexity of migration transition: an attempt using metrics
    Kaur, Harjot
    Kahlon, Karanjeet Singh
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2020, 32 (04) : 623 - 650
  • [34] Alpha, beta and gamma diversity measuring differences in biological communities
    Baselga, Andres
    Gomez-Rodriguez, Carola
    NACC-NOVA ACTA CIENTIFICA COMPOSTELANA BIOLOXIA, 2019, 26 : 39 - +
  • [35] Wiedersehen metrics and exotic involutions of Euclidean spheres
    Abresch, U.
    Duran, C.
    Puettmann, T.
    Rigas, A.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 605 : 1 - 21
  • [36] GEODESIC ORBIT FINSLER METRICS ON EUCLIDEAN SPACES
    Xu, Ming
    Deng, Shaoqiang
    Yan, Zaili
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (02): : 283 - 303
  • [37] Eigentensors of the Lichnerowicz operator in Euclidean Schwarzschild metrics
    Martinez-Morales, Jose L.
    ANNALEN DER PHYSIK, 2006, 15 (09) : 653 - 662
  • [38] Euclidean metrics for motion generation on SE(3)
    Belta, C
    Kumar, V
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2002, 216 (01) : 47 - 60
  • [39] Conformal metrics on the unit ball in euclidean space
    Bonk, M
    Koskela, P
    Rohde, S
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1998, 77 : 635 - 664
  • [40] Deformable model with non-euclidean metrics
    Taton, B
    Lachaud, JO
    COMPUTER VISION - ECCV 2002 PT III, 2002, 2352 : 438 - 452