Comparison of interpretability methods in the context of deep neural networks for radiomics application

被引:0
|
作者
Marchadour, Wistan [1 ]
Badic, Bogdan
Maison, Jonas
Hatt, Mathieu
Vermet, Franck [2 ]
机构
[1] LaTIM, Brest, France
[2] Univ Brest, Brest, France
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
3216
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Methods for Pruning Deep Neural Networks
    Vadera, Sunil
    Ameen, Salem
    [J]. IEEE ACCESS, 2022, 10 : 63280 - 63300
  • [32] TRAINING AND INTERPRETABILITY OF DEEP-NEURAL METHODS FOR DAMAGE CALIBRATION IN COPPER.
    Hickmann, Kyle
    Callis, Skylar
    Andrews, Stephen
    [J]. PROCEEDINGS OF ASME 2023 VERIFICATION, VALIDATION, AND UNCERTAINTY QUANTIFICATION SYMPOSIUM, VVUQ2023, 2023,
  • [33] A Novel Visual Interpretability for Deep Neural Networks by Optimizing Activation Maps with Perturbation
    Zhang, Qinglong
    Rao, Lu
    Yang, Yubin
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3377 - 3384
  • [34] A COMPARISON OF AUDIO SIGNAL PREPROCESSING METHODS FOR DEEP NEURAL NETWORKS ON MUSIC TAGGING
    Choi, Keunwoo
    Fazekas, Gyorgy
    Sandler, Mark
    Cho, Kyunghyun
    [J]. 2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1870 - 1874
  • [35] On Interpretability of Artificial Neural Networks: A Survey
    Fan, Feng-Lei
    Xiong, Jinjun
    Li, Mengzhou
    Wang, Ge
    [J]. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2021, 5 (06) : 741 - 760
  • [36] Investigation of radiomics and deep convolutional neural networks approaches for glioma grading
    Aouadi, Souha
    Torfeh, Tarraf
    Arunachalam, Yoganathan
    Paloor, Satheesh
    Riyas, Mohamed
    Hammoud, Rabih
    Al-Hammadi, Noora
    [J]. BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2023, 9 (03):
  • [37] Exploring the interpretability of deep neural networks used for gravitational lens finding with a sensitivity probe
    Jacobs, C.
    Glazebrook, K.
    Qin, A. K.
    Collett, T.
    [J]. ASTRONOMY AND COMPUTING, 2022, 38
  • [38] Explainable Neural Networks: Achieving Interpretability in Neural Models
    Chakraborty, Manomita
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (06) : 3535 - 3550
  • [39] Interpretability Derived Backdoor Attacks Detection in Deep Neural Networks: Work-in-Progress
    Wen, Xiangyu
    Jiang, Wei
    Zhan, Jinyu
    Wang, Xupeng
    He, Zhiyuan
    [J]. PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE (EMSOFT), 2020, : 13 - 14
  • [40] Explaining Deep Neural Networks in medical imaging context
    Rguibi, Zakaria
    Hajami, AbdelMajid
    Dya, Zitouni
    [J]. 2021 IEEE/ACS 18TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2021,