A note on the almost sure central limit theorem for the product of some partial sums

被引:1
|
作者
Chen, Yang [1 ]
Tan, Zhongquan [2 ]
Wang, Kaiyong [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Math & Phys, Suzhou 215009, Peoples R China
[2] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Peoples R China
基金
美国国家科学基金会;
关键词
almost sure central limit theorem; partial sums; unbounded measurable functions; CONVERGENCE; ASYMPTOTICS;
D O I
10.1186/1029-242X-2014-243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X-n) be a sequence of i.i.d., positive, square integrable random variables with E(X-1) = mu > 0, Var(X-1) = sigma(2). Denote by S-n,S-k = Sigma X-n(i=1)i - X-k and by gamma = sigma/mu the coefficient of variation. Our goal is to show the unbounded, measurable functions g, which satisfy the almost sure central limit theorem, i.e., lim(N ->infinity)1/logN Sigma=(N)(n=1)1/ng((pi S-n(k=1)n,k/(n - 1)(n)mu(n))(1/gamma root n)) = integral(infinity)(0) g(x)dF(x) a.s., where F(.) is the distribution function of the random variable eN and N is a standard normal random variable.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条