INTRA-RETINAL LAYER SEGMENTATION OF OPTICAL COHERENCE TOMOGRAPHY USING DIFFUSION MAP

被引:0
|
作者
Kafieh, Raheleh [1 ]
Rabbani, Hossein [1 ,2 ]
Abramoff, Michael [2 ]
Sonka, Milan [2 ]
机构
[1] Isfahan Univ Med Sci, Med Image & Signal Proc Res Ctr, Dept Biomed Engn, Esfahan, Iran
[2] Univ Iowa, Iowa Inst Biomed Imaging, Iowa City, IA 52242 USA
基金
美国国家卫生研究院;
关键词
Optical coherence tomography (OCT); segmentation; spectral graph theory; diffusion map;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Optical coherence tomography (OCT) is known to be one of the powerful and noninvasive methods in retinal imaging. OCT uses retroreflected light to provide micron-resolution, cross-sectional scans of biological tissues. In contrast to OCT technology development, which has been a field of active research since 1991, OCT image segmentation has only been fully explored during the last decade. In this paper, we introduce a fast segmentation method based on a new kind of spectral graph theory named diffusion maps. The research is performed on spectral domain OCT images depicting normal macular appearance. In contrast to our recent methods of graph based OCT image segmentation, the presented approach does not require edge-based image information and rather relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. This method is tested on thirteen 3D macular SD-OCT images obtained from eyes without pathologies with Topcon 3D OCT-1000 imaging system (with a size of 650 x 512 x 128 voxels and a voxel resolution of 4.81 x 13.67 x 24.41 mu m(3)). The mean unsigned and signed border positioning errors (mean +/- SD) was 8.52 +/- 3.13 and -4.61 +/- 3.35 micrometers, respectively. The average computation time of the proposed algorithms (implemented with MATLAB) was 12 seconds per 2D slice.
引用
收藏
页码:1080 / 1084
页数:5
相关论文
共 50 条
  • [41] ARTIFACTS IN AUTOMATIC RETINAL SEGMENTATION USING DIFFERENT OPTICAL COHERENCE TOMOGRAPHY INSTRUMENTS
    Giani, Andrea
    Cigada, Mario
    Esmaili, Daniel D.
    Salvetti, Paola
    Luccarelli, Saverio
    Marziani, Ermengarda
    Luiselli, Cristiano
    Sabella, Pierfilippo
    Cereda, Matteo
    Eandi, Chiara
    Staurenghi, Giovanni
    [J]. RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2010, 30 (04): : 607 - 616
  • [42] Retinal neurodegeneration in systemic lupus erythematosus: layer by layer retinal study using optical coherence tomography
    Dias-Santos, Arnaldo
    Ferreira, Loana
    Pinheiro, Sofia
    Cunha, Ioao Paulo
    Alves, Marta
    Papoila, Ana Luisa
    Moraes-Fontes, Maria Francisca
    Proenca, Rui
    [J]. ACTA OPHTHALMOLOGICA, 2019, 97
  • [43] Retinal nerve fiber layer thickness map determined from optical coherence tomography images
    Mujat, M
    Chan, RC
    Cense, B
    Park, BH
    Joo, C
    Akkin, T
    Chen, TC
    de Boer, JF
    [J]. OPTICS EXPRESS, 2005, 13 (23): : 9480 - 9491
  • [44] Automated Layer Segmentation of Optical Coherence Tomography Images
    Lu, Shijian
    Cheung, Carol Yim-lui
    Liu, Jiang
    Lim, Joo Hwee
    Leung, Christopher Kai-shun
    Wong, Tien Yin
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (10) : 2605 - 2608
  • [45] Automated Layer Segmentation of Optical Coherence Tomography Images
    Lu, Shijian
    Liu, Jiang
    Lim, Joo Hwee
    Cheung, Carol
    Wong, Tien Yin
    [J]. ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 4, 2010, : 291 - +
  • [46] Deep Neural Network Regression for Automated Retinal Layer Segmentation in Optical Coherence Tomography Images
    Ngo, Lua
    Cha, Jaepyeong
    Han, Jae-Ho
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 303 - 312
  • [47] Optical coherence tomography noise modeling and fundamental bounds on human retinal layer segmentation accuracy
    DuBose, Theodore B.
    Milanfar, Peyman
    Izatt, Joseph A.
    Farsiu, Sina
    [J]. OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XX, 2016, 9697
  • [48] Comparison of coupled level sets and graph cuts for retinal layer segmentation in optical coherence tomography
    Novosel, Jelena
    Ostermann, Marvin
    Thepass, Gijs
    Lemij, Hans
    Vermeer, Koenraad
    van Vliet, Lucas
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (15)
  • [49] SHORTEST PATH WITH BACKTRACKING BASED AUTOMATIC LAYER SEGMENTATION IN PATHOLOGICAL RETINAL OPTICAL COHERENCE TOMOGRAPHY
    Liu, Xiaoming
    Liu, Dong
    Fu, Tianyu
    Zhang, Kai
    Liu, Jun
    Chen, Li
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2770 - 2774
  • [50] Optical Coherence Tomography Segmentation Errors of the Retinal Nerve Fiber Layer Persist Over Time
    Nagarkatti-Gude, Nisha
    Gardiner, Stuart K.
    Fortune, Brad
    Demirel, Shaban
    Mansberger, Steven L.
    [J]. JOURNAL OF GLAUCOMA, 2019, 28 (05) : 368 - 374