MAXIMAL ELEMENT THEOREM WITH APPLICATIONS TO GENERALIZED ABSTRACT ECONOMIES AND SYSTEM OF QUASI-EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLDS

被引:0
|
作者
Al-Homidan, S. [1 ]
Islam, M. [2 ]
Zeeshan, M. [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi Arabia
[2] Aligarh Muslim Univ, Dept Math, Aligarh, India
关键词
Maximal element theorem; generalized abstract economies; system of quasi-equilibrium problems; Hadamard manifolds; FIXED-POINT THEOREM; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a maximal element theorem for a finite family of multivalued maps in the setting of Hadamard manifolds. As an application of our maximal element theorem, we prove the existence of solutions of generalized abstract economies with two constraint correspondences. We also consider the system of quasi-equilibrium problems and system of generalized implicit quasi-equilibrium problems. We first derive the existence result for a solution of system of quasi-equilibrium problems and then by using this result, we prove the existence of a solution of system of a generalized implicit quasi-equilibrium problems. An as application of system of quasi-equilibrium problems, we prove the existence result of constrained Nash equilibrium problem for real-valued functions with finite number of players.
引用
收藏
页码:2565 / 2576
页数:12
相关论文
共 50 条
  • [31] Generalized vector quasi-equilibrium problems
    S. J. Li
    K. L. Teo
    X. Q. Yang
    Mathematical Methods of Operations Research, 2005, 61 : 385 - 397
  • [32] Remarks on generalized quasi-equilibrium problems
    Chen, MP
    Lin, LJ
    Park, S
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (02) : 433 - 444
  • [33] System of vector quasi-equilibrium problems and its applications
    Jian-wei Peng
    Xin-min Yang
    Dao-li Zhu
    Applied Mathematics and Mechanics, 2006, 27 : 1107 - 1114
  • [34] System of vector quasi-equilibrium problems and its applications
    Peng Jian-wen
    Yang Xin-min
    Zhu Dao-li
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (08) : 1107 - 1114
  • [35] SYSTEM OF VECTOR QUASI-EQUILIBRIUM PROBLEMS AND ITS APPLICATIONS
    彭建文
    杨新民
    朱道立
    Applied Mathematics and Mechanics(English Edition), 2006, (08) : 1107 - 1114
  • [36] EXISTENCE CONDITIONS FOR SET-VALUED VECTOR QUASI-EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLDS WITH VARIABLE DOMINATION STRUCTURE AND APPLICATIONS
    Nguyen Van Hung
    Koebis, Elisabeth
    Vo Minh Tam
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (12) : 2597 - 2612
  • [37] Generalized vector equilibrium problems on Hadamard manifolds
    Jana, Shreyasi
    Nahak, Chandal
    Ionescu, Cristiana
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1402 - 1409
  • [38] The existence of solutions for the system of generalized vector quasi-equilibrium problems
    Lin, Z
    Yu, J
    APPLIED MATHEMATICS LETTERS, 2005, 18 (04) : 415 - 422
  • [39] On the existence of solutions to generalized quasi-equilibrium problems
    Truong Thi Thuy Duong
    Nguyen Xuan Tan
    Journal of Global Optimization, 2012, 52 : 711 - 728
  • [40] Generalized mixed quasi-equilibrium problems with trifunction
    Noor, MA
    APPLIED MATHEMATICS LETTERS, 2005, 18 (06) : 695 - 700