HANDLING DYNAMIC MULTIOBJECTIVE PROBLEMS WITH PARTICLE SWARM OPTIMIZATION

被引:0
|
作者
Diaz Manriquez, Alan [1 ]
Toscano Pulido, Gregorio [1 ]
Ramirez Torres, Jose Gabriel [1 ]
机构
[1] CINVESTAV Tamaulipas, Lab Tecnol Informac, Km 6 Carretera Cd Victoria Monterrey, Cd Victoria 87267, Tamaulipas, Mexico
关键词
Dynamic multi-objective optimization; Particle swarm optimization; Multi-objective optimization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper the hyperplane distribution and Pareto dominance were incorporated into a particle swarm optimization algorithm in order to allow it to handle dynamic multiobjective problems. When a change in a dynamic multiobjectve function is detected, the proposed algorithm reinitializes (in different ways) the PSO's velocity parameter and the archive where the non-dominated solutions are beeing stored such that the algorithm can follow the dynamic Pareto front. The proposed approach is validated using two dynamic multiobjective test functions and an standard metric taken from the specialized literature. Results indicate that the proposed approach is highly competitive which can be considered as a viable alternative in order to solve dynamic multiobjective optimization problems.
引用
下载
收藏
页码:337 / 342
页数:6
相关论文
共 50 条
  • [31] A particle swarm algorithm for multiobjective design optimization
    Ochlak, Eric
    Forouraghi, Babak
    ICTAI-2006: EIGHTEENTH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, : 765 - +
  • [32] A Multiobjective Particle Swarm Optimizer for Constrained Optimization
    Yen, Gary G.
    Leong, Wen-Fung
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2011, 2 (01) : 1 - 23
  • [33] Adaptive Gradient Multiobjective Particle Swarm Optimization
    Han, Honggui
    Lu, Wei
    Zhang, Lu
    Qiao, Junfei
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (11) : 3067 - 3079
  • [34] Particle swarm with extended memory for multiobjective optimization
    Hu, XH
    Eberhart, RC
    Shi, YH
    PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, : 193 - 197
  • [35] A diversity enhanced multiobjective particle swarm optimization
    Pan, Anqi
    Wang, Lei
    Guo, Weian
    Wu, Qidi
    INFORMATION SCIENCES, 2018, 436 : 441 - 465
  • [36] Diversity controlled multiobjective particle swarm optimization
    Liu T.
    Wang Z.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2021, 48 (03): : 106 - 114
  • [37] Constraint handling technique based on Lebesgue measure for constrained multiobjective particle swarm optimization algorithm
    Wang, Hui
    Cai, Tie
    Li, Kangshun
    Pedrycz, Witold
    KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [38] A Rule Learning Multiobjective Particle Swarm Optimization
    de Carvalho, A. B.
    Pozo, A. T. R.
    IEEE LATIN AMERICA TRANSACTIONS, 2009, 7 (04) : 478 - 486
  • [39] The crowd framework for multiobjective particle swarm optimization
    Xu, Heming
    Wang, Yinglin
    Xu, Xin
    ARTIFICIAL INTELLIGENCE REVIEW, 2014, 42 (04) : 1095 - 1138
  • [40] Improving Multiobjective Particle Swarm Optimization Method
    Saleh, Intisar K.
    Ozkaya, Ufuk
    Hasan, Qais F.
    NEW TRENDS IN INFORMATION AND COMMUNICATIONS TECHNOLOGY APPLICATIONS, NTICT 2018, 2018, 938 : 143 - 156