HANDLING DYNAMIC MULTIOBJECTIVE PROBLEMS WITH PARTICLE SWARM OPTIMIZATION

被引:0
|
作者
Diaz Manriquez, Alan [1 ]
Toscano Pulido, Gregorio [1 ]
Ramirez Torres, Jose Gabriel [1 ]
机构
[1] CINVESTAV Tamaulipas, Lab Tecnol Informac, Km 6 Carretera Cd Victoria Monterrey, Cd Victoria 87267, Tamaulipas, Mexico
关键词
Dynamic multi-objective optimization; Particle swarm optimization; Multi-objective optimization;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper the hyperplane distribution and Pareto dominance were incorporated into a particle swarm optimization algorithm in order to allow it to handle dynamic multiobjective problems. When a change in a dynamic multiobjectve function is detected, the proposed algorithm reinitializes (in different ways) the PSO's velocity parameter and the archive where the non-dominated solutions are beeing stored such that the algorithm can follow the dynamic Pareto front. The proposed approach is validated using two dynamic multiobjective test functions and an standard metric taken from the specialized literature. Results indicate that the proposed approach is highly competitive which can be considered as a viable alternative in order to solve dynamic multiobjective optimization problems.
引用
下载
收藏
页码:337 / 342
页数:6
相关论文
共 50 条
  • [1] On performance metrics and particle swarm methods for dynamic multiobjective optimization problems
    Li, Xiaodong
    Branke, Juergen
    Kirley, Michael
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 576 - +
  • [2] Improving Constraint Handling for Multiobjective Particle Swarm Optimization
    Yu, Erdong
    Fei, Qing
    Ma, Hongbin
    Geng, Qingbo
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 8622 - 8627
  • [3] Performance Measures and Particle Swarm Methods for Dynamic Multiobjective Optimization Problems
    Li, Xiaodong
    Branke, Juergen
    Kirley, Michael
    GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 907 - 907
  • [4] Constraint Handling Procedure for Multiobjective Particle Swarm Optimization
    Yen, Gary G.
    Leong, Wen Fung
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [5] Multiobjective optimization using dynamic neighborhood Particle Swarm Optimization
    Hu, XH
    Eberhart, R
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1677 - 1681
  • [6] Dynamic Shannon Performance in a Multiobjective Particle Swarm Optimization
    Solteiro Pires, E. J.
    Tenreiro Machado, J. A.
    de Moura Oliveira, P. B.
    ENTROPY, 2019, 21 (09)
  • [7] Dynamic Multiple Swarms in Multiobjective Particle Swarm Optimization
    Yen, Gary G.
    Leong, Wen Fung
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2009, 39 (04): : 890 - 911
  • [8] Particle Swarm Optimization and strength Pareto to solve multiobjective optimization problems
    Barbosa, Leandro Zavarez
    Coelho, Leandro dos S.
    Lebensztajn, Luiz
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2013, 43 (1-2) : 137 - 149
  • [9] Particle Swarm Optimization for Constrained and Multiobjective Problems: A Brief Review
    Ab Aziz, Nor Azlina
    Alias, Mohamad Yusoff
    Mohemmed, Ammar W.
    Ab Aziz, Kamarulzaman
    MANAGEMENT AND ARTIFICIAL INTELLIGENCE, 2011, 6 : 146 - +
  • [10] Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems
    Yu, Xiang
    Zhang, Xueqing
    PLOS ONE, 2017, 12 (02):