A geometric invariant scheme for image classification

被引:0
|
作者
Pun, CM [1 ]
Wong, CT [1 ]
机构
[1] Univ Macau, Fac Sci & Technol, Macao, Peoples R China
关键词
shift and scale invariance; wavelet packet transform; shift invariance; image classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An effective geometric invariant scheme for shift and scale invariant wavelet feature extraction method for image classification is proposed The feature extraction process involves a normalization followed by an adaptive shift invariant wavelet packet transform. An energy signature is computed for each sub-band of these invariant wavelet coefficients. A reduced subset of energy signatures are selected as feature vector for image classification. Experimental results show that the proposed method can achieve high classification accuracy of 98.5%, and outperforms the other two image classification methods.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 50 条
  • [31] Tangent vector kernels for invariant image classification with SVMs
    Pozdnoukhov, A
    Bengio, S
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 486 - 489
  • [32] Rotational Invariant Discriminant Subspace Learning For Image Classification
    Ye, Qiaolin
    Zhang, Zhao
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1217 - 1222
  • [33] CLASSIFICATION OF INVARIANT IMAGE REPRESENTATIONS USING A NEURAL NETWORK
    KHOTANZAD, A
    LU, JH
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (06): : 1028 - 1038
  • [34] Rotation-invariant features for texture image classification
    Jalil, A.
    Qureshi, I. M.
    Manzar, A.
    Zahoor, R. A.
    2006 IEEE INTERNATIONAL CONFERENCE ON ENGINEERING OF INTELLIGENT SYSTEMS, 2006, : 42 - +
  • [35] Deep invariant texture features for water image classification
    Xue, Minglong
    Shivakumara, Palaiahnakote
    Wu, Xuerong
    Lu, Tong
    Pal, Umapada
    Blumenstein, Michael
    Lopresti, Daniel
    SN APPLIED SCIENCES, 2020, 2 (12):
  • [36] Deep invariant texture features for water image classification
    Minglong Xue
    Palaiahnakote Shivakumara
    Xuerong Wu
    Tong Lu
    Umapada Pal
    Michael Blumenstein
    Daniel Lopresti
    SN Applied Sciences, 2020, 2
  • [37] Rotation invariant texture classification of remote sense image
    Zhang, Lin
    Du, Hong-Ya
    Liu, Yun-Cai
    Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2004, 23 (03): : 189 - 192
  • [38] Rotation Invariant Spatial Pyramid Matching for Image Classification
    Karmakar, Priyabrata
    Teng, Shyh Wei
    Lu, Guojun
    Zhang, Dengsheng
    2015 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2015, : 653 - 660
  • [39] Finding conformal killing vectors from the invariant classification scheme
    Edgar, B
    Ludwig, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (20): : 2757 - 2757
  • [40] Geometric invariant watermarking by local Zernike moments of binary image patches
    Yuan, Xiao-Chen
    Pun, Chi-Man
    Chen, C. -L. Philip
    SIGNAL PROCESSING, 2013, 93 (07) : 2087 - 2095