Segmentation of magnetic resonance images using 3D deformable models

被引:0
|
作者
Lötjönen, J
Magnin, IE
Reissman, PJ
Nenonen, J
Katila, T
机构
[1] Inst Natl Sci Appl, Creatis, F-69621 Villeurbanne, France
[2] Aalto Univ, Biomed Engn Lab, FIN-02015 Helsinki, Finland
[3] Univ Helsinki, Cent Hosp, BioMag Lab, FIN-00029 Helsinki, Finland
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new method to segment MR volumes has been developed. The method matches elastically a 3D deformable prior model, describing the structures of interest, to the MR volume of a patient. The deformation is done using a deformation grid. Oriented distance maps are utilized to guide the deformation process. Two alternative restrictions are used to preserve the geometrical prior knowledge of the model. The method is applied to extract the body, the lungs and the heart. The segmentation is needed to build individualized boundary element models for bioelectromagnetic inverse problem. The method is fast, automatic and accurate. Good results have been achieved for four MR volumes tested so far.
引用
收藏
页码:1213 / 1221
页数:9
相关论文
共 50 条
  • [11] 3D SEGMENTATION OF RODENT BRAINS USING DEFORMABLE MODELS AND VARIATIONAL METHODS
    Zhang, Shaoting
    Zhou, Jinghao
    Wang, Xiaoxu
    Chang, Sukmoon
    Metaxas, Dimitris N.
    Pappas, George
    Delis, Foteini
    Volkow, Nora D.
    Wang, Gene-Jack
    Thanos, Panayotis K.
    Kambhamettu, Chandra
    2009 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPR WORKSHOPS 2009), VOLS 1 AND 2, 2009, : 157 - +
  • [12] 3D brain tumor segmentation using fuzzy classification and deformable models
    Khotanlou, H
    Atif, J
    Colliot, O
    Bloch, I
    FUZZY LOGIC AND APPLICATIONS, 2006, 3849 : 312 - 318
  • [13] Automatic segmentation of bladder and prostate using coupled 3D deformable models
    Costa, Maria Jimena
    Delingette, Herve
    Novellas, Sebastien
    Ayache, Nicholas
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2007, PT 1, PROCEEDINGS, 2007, 4791 : 252 - 260
  • [14] Localization of 3D anatomical point landmarks in 3D tomographic images using deformable models
    Frantz, S
    Rohr, K
    Stiehl, HS
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2000, 2000, 1935 : 492 - 501
  • [15] Anomaly-Aware 3D Segmentation of Knee Magnetic Resonance Images
    Woo, Boyeong
    Engstrom, Craig
    Fripp, Jurgen
    Crozier, Stuart
    Chandra, Shekhar S.
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 1360 - 1374
  • [16] Automated brain segmentation algorithm for 3D magnetic resonance brain images
    Park, Jong Geun
    Jeong, Taeuk
    Lee, Chulhee
    SOFA 2007: 2ND IEEE INTERNATIONAL WORKSHOP ON SOFT COMPUTING APPLICATIONS, PROCEEDINGS, 2007, : 57 - +
  • [17] Initialization of deformable models in 3D magnetic resonance images guided by automatically detected phase congruency point landmarks
    Villa Pinto, Carlos H.
    Ferrari, Ricardo Jose
    PATTERN RECOGNITION LETTERS, 2016, 79 : 1 - 7
  • [18] Segmentation of 3D Echocardiographic Images using Deformable Simplex Meshes and Adaptive Filtering
    Nillesen, M. M.
    Lopata, R. G. P.
    Gerrits, I. H.
    Kapusta, L.
    Huisman, H. J.
    Thijssen, J. M.
    de Korte, C. L.
    4TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2009, 22 (1-3): : 550 - 554
  • [19] Label Super-Resolution for 3D Magnetic Resonance Images using Deformable U-net
    Liu, Di
    Liu, Jiang
    Liu, Yihao
    Tao, Ran
    Prince, Jerry L.
    Carass, Aaron
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [20] Neighbor-constrained segmentation with 3D deformable models
    Yang, J
    Staib, LH
    Duncan, JS
    INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2003, 2732 : 198 - 209