Electronic structures of semiconducting FeGa3, RuGa3, OsGa3, and RuIn3 with the CoGa3- or the FeGa3-type structure

被引:45
|
作者
Imai, Y [1 ]
Watanabe, A [1 ]
机构
[1] AIST, Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan
关键词
electronic structure of metals and alloys; electronic structure; calculation;
D O I
10.1016/j.intermet.2005.10.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electronic structure of FcGa(3). RUGa3, OsGa3 and Ruln(3) with the crystal structures belonging to the space group of P4n2 (No. 118). which is usually referred to as the CoGa3-type structure. and P4(2)/mnni (No. 136). which is usually referred to as the FeGa3-type structure, have been calculated using a first-principle pseudopotential method based on the density-functional theory within the local density approximation (LDA) with the generalized gradient correction. All of them have the similar band structure in that the valence band maximum occurs at or near A and the conduction band minimum occurs at a point between Z and Gamma. From the total energies calculated. compounds with the FeGa3-type structures are more stable than those with the CoGa3-type structures. The band gaps of FeGa3, RuGa3, OsGa3 and RuIn3 with the FeGa3-type structure are about 0.50, 0.26, 0.68. and 0.30 eV, respectively, which are wider than those with the CoGa3-type structure. Calculated band gaps are wider than the observed gaps, which is unusual in the LDA calculation. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:722 / 728
页数:7
相关论文
共 50 条
  • [41] Optical absorption and electronic structure of intermetallic compound RuIn3
    Knyazev, Yu. V.
    Kuz'min, Yu. I.
    Nekrasov, I. A.
    OPTICS AND SPECTROSCOPY, 2013, 114 (01) : 83 - 86
  • [42] Optical absorption and electronic structure of intermetallic compound RuIn3
    Yu. V. Knyazev
    Yu. I. Kuz’min
    I. A. Nekrasov
    Optics and Spectroscopy, 2013, 114 : 83 - 86
  • [43] Interplay between localized and itinerant magnetism in Co-substituted FeGa3
    Gippius, A. A.
    Verchenko, V. Yu
    Tkachev, A. V.
    Gervits, N. E.
    Lue, C. S.
    Tsirlin, A. A.
    Buettgen, N.
    Kraetschmer, W.
    Baenitz, M.
    Shatruk, M.
    Shevelkov, A. V.
    PHYSICAL REVIEW B, 2014, 89 (10)
  • [44] Effect of FeGa3 powder addition on the magnetic properties of NdFeB sintered magnets
    Zhao, TS
    Kim, YB
    Jeung, WY
    IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (05) : 3301 - 3303
  • [45] Optical conductivity and vibrational spectra of the narrow-gap semiconductor FeGa3
    Martin, C.
    Martinez, V. A.
    Opacic, M.
    Djurdjic-Mijin, S.
    Mitric, P.
    Umicevic, A.
    Poudel, A.
    Sydoryk, I.
    Ren, Weijun
    Martin, R. M.
    Tanner, D. B.
    Lazarevic, N.
    Petrovic, C.
    Tanaskovic, D.
    PHYSICAL REVIEW B, 2023, 107 (16)
  • [46] Emergence of competing magnetic interactions induced by Ge doping in the semiconductor FeGa3
    Alvarez-Quiceno, J. C.
    Cabrera-Baez, M.
    Ribeiro, R. A.
    Avila, M. A.
    Dalpian, G. M.
    Osorio-Guillen, J. M.
    PHYSICAL REVIEW B, 2016, 94 (01)
  • [47] Diffusional Relaxation of Quadrupole Interactions of111In/Cd Probes in IrIn3 and Related Phases Having FeGa3 Structure
    Newhouse R.L.
    Singh P.
    Zacate M.O.
    Collins G.S.
    Defect and Diffusion Forum, 2022, 420 : 73 - 90
  • [48] Crystal structure and magnetic properties of intermetallic semiconductor FeGa3 lightly doped by Co and Ni
    Likhanov, M. S.
    Verchenko, V. Yu.
    Nasonova, D. I.
    Gippius, A. A.
    Zhurenko, S. V.
    Demikhov, E. I.
    Kuo, C. N.
    Lue, C. S.
    Young, B. L.
    Shevelkov, A. V.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 745 : 341 - 346
  • [49] Effect of FeGa3 powder addition on the magnetic properties of NdFeB sintered magnets
    Zhao, T.S.
    Kim, Yoon B.
    Jeung, W.Y.
    IEEE Transactions on Magnetics, 1999, 35 (5 pt 2) : 3301 - 3303
  • [50] A first principle study of electronic band structures and effective mass tensors of thermoelectric materials: PbTe, Mg2Si, FeGa3 and CoSb3
    Sharma, Sonu
    Pandey, Sudhir K.
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 85 : 340 - 346