Global well-posedness for the stochastic non-Newtonian fluid equations and convergence to the Navier-Stokes equations

被引:0
|
作者
Henandez, Marco [1 ]
Phuong Nguyen [2 ,3 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
[3] Sam Houston State Univ, Dept Math & Stat, Huntsville, TX 77340 USA
关键词
martingale solution; pathwise solution; stochastic partial differential equations; MARTINGALE;
D O I
10.1002/mma.6827
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of global pathwise solutions for the stochastic non-Newtonian incompressible fluid equations in two space dimensions. Moreover, we show that said solutions converge in probability to solutions of the stochastic Navier-Stokes equations in the appropriate limit. Our approach is based on Galerkin approximations and the theory of martingale solutions.
引用
收藏
页码:1252 / 1284
页数:33
相关论文
共 50 条
  • [1] Well-posedness for the Navier-Stokes equations
    Koch, H
    Tataru, D
    ADVANCES IN MATHEMATICS, 2001, 157 (01) : 22 - 35
  • [2] The convergence of non-Newtonian fluids to Navier-Stokes equations
    Guo, Boling
    Guo, Chunxiao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (02) : 468 - 478
  • [3] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Jinlu Li
    Zhaoyang Yin
    Xiaoping Zhai
    Acta Mathematica Scientia, 2022, 42 : 2131 - 2148
  • [4] GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    李金禄
    殷朝阳
    翟小平
    Acta Mathematica Scientia, 2022, 42 (05) : 2131 - 2148
  • [5] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Li, Jinlu
    Yin, Zhaoyang
    Zhai, Xiaoping
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 2131 - 2148
  • [6] Global well-posedness to the incompressible Navier-Stokes equations with damping
    Zhong, Xin
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (62)
  • [7] Global well-posedness of coupled Navier-Stokes and Darcy equations
    Cui, Meiying
    Dong, Wenchao
    Guo, Zhenhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 388 : 82 - 111
  • [8] WELL-POSEDNESS OF THE HYDROSTATIC NAVIER-STOKES EQUATIONS
    Gerard-Varet, David
    Masmoudi, Nader
    Vicol, Vlad
    ANALYSIS & PDE, 2020, 13 (05): : 1417 - 1455
  • [9] On the solvability of the Navier-Stokes equations for a nonhomogeneous non-Newtonian fluid
    Zhikov, V. V.
    Pastukhova, S. E.
    DOKLADY MATHEMATICS, 2009, 79 (03) : 403 - 407
  • [10] On the solvability of the Navier-Stokes equations for a nonhomogeneous non-Newtonian fluid
    V. V. Zhikov
    S. E. Pastukhova
    Doklady Mathematics, 2009, 79 : 403 - 407