LIMITING DISTRIBUTIONS IN GENERALIZED ZECKENDORF DECOMPOSITIONS

被引:0
|
作者
Gueganic, Alexandre [1 ]
Carty, Granger [1 ]
Kim, Yujin H. [2 ]
Miller, Steven J. [1 ,3 ]
Shubina, Alina [1 ]
Sweitzer, Shannon [4 ]
Winsor, Eric [5 ]
Yang, Jianing [6 ]
机构
[1] Williams Coll, Dept Math & Stat, Williamstown, MA 01267 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[4] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[5] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[6] Colby Coll, Dept Math & Stat, Waterville, ME 04901 USA
来源
FIBONACCI QUARTERLY | 2019年 / 57卷 / 02期
关键词
LEGAL DECOMPOSITIONS; SUMMANDS; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An equivalent definition of the Fibonacci numbers is that they are the unique sequence such that every integer can be written uniquely as a sum of nonadjacent terms. We can view this as we have bins of length 1, we can take at most one element from a bin, and if we choose an element from a bin we cannot take one from a neighboring bin. We generalize to allowing bins of varying length and restrictions as to how many elements may be used in a decomposition. We derive conditions on when the resulting sequences have uniqueness of decomposition, and (similar to the Fibonacci case) when the number of summands converges to a Gaussian; the main tool in the proofs here is the Lyaponuv Central Limit Theorem.
引用
收藏
页码:109 / 125
页数:17
相关论文
共 50 条
  • [21] ON GENERALIZED BEAUVILLE DECOMPOSITIONS
    Bae, Younghan
    Maulik, Davesh
    Shen, Junliang
    Yin, Qizheng
    arXiv, 1600,
  • [22] The parity of the sum-of-digits-function of generalized Zeckendorf representations
    Drmota, M
    Gajdosik, J
    FIBONACCI QUARTERLY, 1998, 36 (01): : 3 - 19
  • [23] Generalized pseudoskeleton decompositions
    Hamm, Keaton
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 664 : 236 - 252
  • [24] LAST EXIT DECOMPOSITIONS AND DISTRIBUTIONS
    GETOOR, RK
    SHARPE, MJ
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 23 (05) : 377 - 404
  • [25] DECOMPOSITIONS OF RADIALLY SYMMETRICAL DISTRIBUTIONS
    KUDINA, LS
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1975, 20 (03): : 656 - 660
  • [26] LAST EXIT DECOMPOSITIONS AND DISTRIBUTIONS
    GETOOR, RK
    SHARPE, MJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A201 - A201
  • [27] Locating factors of a characteristic word via the generalized Zeckendorf representation of numbers
    Chuan, Wai-Fong
    Ho, Hui-Ling
    THEORETICAL COMPUTER SCIENCE, 2012, 440 : 39 - 51
  • [28] DECOMPOSITIONS OF GENERALIZED COMPLETE GRAPHS
    Smith, Benjamin R.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 80 (03) : 523 - 525
  • [29] GENERALIZED CASCADE DECOMPOSITIONS OF AUTOMATA
    YOELI, M
    JOURNAL OF THE ACM, 1965, 12 (03) : 411 - &
  • [30] Graph decompositions into generalized cubes
    El-Zanati, S
    Plantholt, M
    Vanden Eynden, C
    ARS COMBINATORIA, 1998, 49 : 237 - 247