LIMITING DISTRIBUTIONS IN GENERALIZED ZECKENDORF DECOMPOSITIONS

被引:0
|
作者
Gueganic, Alexandre [1 ]
Carty, Granger [1 ]
Kim, Yujin H. [2 ]
Miller, Steven J. [1 ,3 ]
Shubina, Alina [1 ]
Sweitzer, Shannon [4 ]
Winsor, Eric [5 ]
Yang, Jianing [6 ]
机构
[1] Williams Coll, Dept Math & Stat, Williamstown, MA 01267 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[4] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[5] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[6] Colby Coll, Dept Math & Stat, Waterville, ME 04901 USA
来源
FIBONACCI QUARTERLY | 2019年 / 57卷 / 02期
关键词
LEGAL DECOMPOSITIONS; SUMMANDS; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An equivalent definition of the Fibonacci numbers is that they are the unique sequence such that every integer can be written uniquely as a sum of nonadjacent terms. We can view this as we have bins of length 1, we can take at most one element from a bin, and if we choose an element from a bin we cannot take one from a neighboring bin. We generalize to allowing bins of varying length and restrictions as to how many elements may be used in a decomposition. We derive conditions on when the resulting sequences have uniqueness of decomposition, and (similar to the Fibonacci case) when the number of summands converges to a Gaussian; the main tool in the proofs here is the Lyaponuv Central Limit Theorem.
引用
收藏
页码:109 / 125
页数:17
相关论文
共 50 条
  • [1] ON GENERALIZED ZECKENDORF DECOMPOSITIONS AND GENERALIZED GOLDEN STRINGS
    Chu, Hung Viet
    FIBONACCI QUARTERLY, 2021, 59 (03): : 254 - 261
  • [2] A PROBABILISTIC APPROACH TO GENERALIZED ZECKENDORF DECOMPOSITIONS
    Ben-Ari, Iddo
    Miller, Steven J.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (02) : 1302 - 1332
  • [3] THE AVERAGE GAP DISTRIBUTION FOR GENERALIZED ZECKENDORF DECOMPOSITIONS
    Beckwith, Olivia
    Bower, Amanda
    Gaudet, Louis
    Insoft, Rachel
    Li, Shiyu
    Miller, Steven J.
    Tosteson, Philip
    FIBONACCI QUARTERLY, 2013, 51 (01): : 13 - 27
  • [4] The distribution of gaps between summands in generalized Zeckendorf decompositions
    Bower, Amanda
    Insoft, Rachel
    Li, Shiyu
    Miller, Steven J.
    Tosteson, Philip
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 135 : 130 - 160
  • [5] CENTRAL LIMIT THEOREMS FOR GAPS OF GENERALIZED ZECKENDORF DECOMPOSITIONS
    Li, Ray
    Miller, Steven J.
    FIBONACCI QUARTERLY, 2019, 57 (03): : 213 - 230
  • [6] Summand minimality and asymptotic convergence of generalized Zeckendorf decompositions
    Cordwell K.
    Hlavacek M.
    Huynh C.
    Miller S.J.
    Peterson C.
    Vu Y.N.T.
    Research in Number Theory, 2018, 4 (4)
  • [7] ON THE NUMBER OF SUMMANDS IN ZECKENDORF DECOMPOSITIONS
    Kologlu, Murat
    Kopp, Gene S.
    Miller, Steven J.
    Wang, Yinghui
    FIBONACCI QUARTERLY, 2011, 49 (02): : 116 - 130
  • [8] BENFORD BEHAVIOR OF ZECKENDORF DECOMPOSITIONS
    Best, Andrew
    Dynes, Patrick
    Edelsbrunner, Xixi
    McDonald, Brian
    Miller, Steven J.
    Tor, Kimsy
    Turnage-Butterbaugh, Caroline
    Weinstein, Madeleine
    FIBONACCI QUARTERLY, 2014, 52 (05): : 35 - 46
  • [9] GAUSSIAN BEHAVIOR IN ZECKENDORF DECOMPOSITIONS FROM LATTICES
    Chen, Eric
    Chen, Robin
    Guo, Lucy
    Jiang, Cindy
    Miller, Steven J.
    Siktar, Joshua M.
    Yu, Peter
    FIBONACCI QUARTERLY, 2019, 57 (03): : 201 - 212
  • [10] THE GENERALIZED ZECKENDORF THEOREMS
    BRUCKMAN, PS
    FIBONACCI QUARTERLY, 1989, 27 (04): : 338 - 347