MEMORY PARAMETER ESTIMATION IN THE PRESENCE OF LEVEL SHIFTS AND DETERMINISTIC TRENDS

被引:28
|
作者
McCloskey, Adam [1 ]
Perron, Pierre [2 ]
机构
[1] Brown Univ, Providence, RI 02912 USA
[2] Boston Univ, Boston, MA 02215 USA
关键词
LOG-PERIODOGRAM REGRESSION; LONG-RANGE DEPENDENCE; PERTURBED FRACTIONAL PROCESSES; TIME-SERIES; WHITTLE ESTIMATION; VOLATILITY; MODELS;
D O I
10.1017/S0266466613000042
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose estimators of the memory parameter of a time series that are robust to a wide variety of random level shift processes, deterministic level shifts, and deterministic time trends. The estimators are simple trimmed versions of the popular log-periodogram regression estimator that employ certain sample-size-dependent and, in some cases, data-dependent trimmings that discard low-frequency components. We also show that a previously developed trimmed local Whittle estimator is robust to the same forms of data contamination. Regardless of whether the underlying long-or short-memory process is contaminated by level shifts or deterministic trends, the estimators are consistent and asymptotically normal with the same limiting variance as their standard untrimmed counterparts. Simulations show that the trimmed estimators perform their intended purpose quite well, substantially decreasing both finite-sample bias and root mean-squared error in the presence of these contaminating components. Furthermore, we assess the trade-offs involved with their use when such components are not present but the underlying process exhibits strong short-memory dynamics or is contaminated by noise. To balance the potential finite-sample biases involved in estimating the memory parameter, we recommend a particular adaptive version of the trimmed log-periodogram estimator that performs well in a wide variety of circumstances. We apply the estimators to stock market volatility data to find that various time series typically thought to be long-memory processes actually appear to be short-or very weak long-memory processes contaminated by level shifts or deterministic trends.
引用
收藏
页码:1196 / 1237
页数:42
相关论文
共 50 条
  • [31] On the influence of a detection step on lower bounds for deterministic parameter estimation
    Chaumette, E
    Larzabal, P
    Forster, P
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (11) : 4080 - 4090
  • [32] DETERMINISTIC PARAMETER ESTIMATION FOR NEAR-OPTIMUM FEEDBACK CONTROL
    PERKINS, WR
    KOKOTOVIC, PV
    AUTOMATICA, 1971, 7 (04) : 439 - +
  • [33] Deterministic global optimization for error-in-variables parameter estimation
    Gau, CY
    Stadtherr, MA
    AICHE JOURNAL, 2002, 48 (06) : 1192 - 1197
  • [34] Deterministic Performance Analysis of Subspace Methods for Cisoid Parameter Estimation
    Aubel, Celine
    Bolcskei, Helmut
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1551 - 1555
  • [35] Deterministic, quenched, and annealed parameter estimation for heterogeneous network models
    Di Vece, Marzio
    Garlaschelli, Diego
    Squartini, Tiziano
    PHYSICAL REVIEW E, 2023, 108 (05)
  • [36] CONSISTENT ESTIMATION OF A LOCATION PARAMETER IN PRESENCE OF AN INCIDENTAL SCALE PARAMETER
    PFANZAGL, J
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (04): : 1353 - &
  • [37] Subsampling tests for variance changes in the presence of autoregressive parameter shifts
    Jin, Hao
    Zhang, Jinsuo
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (10) : 2255 - 2265
  • [38] On parameter estimation using level sets
    Berg, JM
    Holmström, K
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (05) : 1372 - 1393
  • [39] On parameter estimation using level sets
    Berg, JM
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 3758 - 3762
  • [40] A NOTE ON UNIT ROOT TESTING IN THE PRESENCE OF LEVEL SHIFTS
    Cavaliere, G.
    Georgiev, I.
    STATISTICA, 2006, 66 (01) : 3 - 17