Observations of Vortex Emissions from Superfluid 4He Turbulence at High Temperatures

被引:5
|
作者
Oda, S. [1 ]
Wakasa, Y. [1 ]
Kubo, H. [1 ]
Obara, K. [1 ]
Yano, H. [1 ]
Ishikawa, O. [1 ]
Hata, T. [1 ]
机构
[1] Osaka City Univ, Grad Sch Sci, Osaka 5588585, Japan
基金
日本学术振兴会;
关键词
Quantized vortex; Quantum turbulence; Superfluid He-4; QUANTUM TURBULENCE; HELIUM;
D O I
10.1007/s10909-013-0934-2
中图分类号
O59 [应用物理学];
学科分类号
摘要
An immersed object with high velocity oscillations causes quantum turbulence in superfluid He-4, even at very low temperatures. The continuously generated turbulence may emit vortex rings from a turbulent region. In the present work, we report vortex emissions from quantum turbulence in superfluid He-4 at high temperatures, by using three vibrating wires as a turbulence generator and vortex detectors. Two detector wires were mounted beside a generator wire: one in parallel and the other in perpendicular to the oscillation direction of the generator. The detection times of vortex rings represent an exponential distribution with a delay time t (0) and a mean detection period t (1). The delay time includes the generation time of a fully developed turbulence and the time-of-flight of a vortex ring. At high temperatures, vortices are dissipated by relative motion between a normal fluid component and the vortices, resulting that only large vortex rings are reachable to the detectors. Using this method, we detected vortex rings with a diameter of 100 mu m, comparable to a peak-to-peak vibration amplitude of 104 mu m of the generator. The large vortices observed here are emitted anisotropically from the generator. The emissions parallel to the vibrating direction are much less than those perpendicular to the direction.
引用
收藏
页码:317 / 323
页数:7
相关论文
共 50 条
  • [41] Size Distribution of Emission Vortex Rings in Turbulence Induced by Vibrating Wire in Superfluid 4He
    Yano, H.
    Hamazaki, K.
    Koizumi, N.
    Sato, K.
    Obara, K.
    Ishikawa, O.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 201 (1-2) : 18 - 24
  • [42] Vortex nucleation by vortex-phonon interaction in superfluid 4He
    Yamamoto, H
    Ishikawa, K
    PHYSICA B, 2000, 284 : 93 - 94
  • [43] Convective Turbulence in Superfluid Solutions 3He–4He
    G. Sheshin
    V. Chagovets
    T. Kalko
    E. Rudavskii
    A. Zadorozhko
    Journal of Low Temperature Physics, 2008, 150 : 420 - 425
  • [44] Vortex Shedding from an Object Moving in Superfluid 4He at mK Temperatures and in a Bose-Einstein Condensate
    Schoepe, W.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2017, 186 (1-2) : 121 - 126
  • [45] A FLOW SOURCE FOR THE STUDY OF QUANTUM TURBULENCE IN SUPERFLUID 4HE
    Babuin, Simone
    Rotter, Milos
    Stammeier, Mathias
    Sebek, Josef
    Skrbek, Ladislav
    EFM11 - EXPERIMENTAL FLUID MECHANICS 2011, 2012, 25
  • [46] Developed Capillary Turbulence on the Surface of Normal and Superfluid 4He
    Leonid Victorovich Abdurakhimov
    Maxim Yurievich Brazhnikov
    Alexander Alexeevich Levchenko
    L. P. Mezhov-Deglin
    Journal of Low Temperature Physics, 2008, 150 : 426 - 430
  • [47] Path integral approach to vortex filament in superfluid 4He
    Yasui, Y
    Ogura, W
    Tsubota, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (01) : 12 - 15
  • [48] An experimental study of turbulent vortex rings in superfluid 4He
    Svancara, P.
    Pavelka, M.
    La Mantia, M.
    JOURNAL OF FLUID MECHANICS, 2020, 889
  • [49] Transition to Turbulence for a Quartz Tuning Fork in Superfluid 4He
    D. I. Bradley
    M. J. Fear
    S. N. Fisher
    A. M. Guénault
    R. P. Haley
    C. R. Lawson
    P. V. E. McClintock
    G. R. Pickett
    R. Schanen
    V. Tsepelin
    L. A. Wheatland
    Journal of Low Temperature Physics, 2009, 156 : 116 - 131
  • [50] Transition to Turbulence for a Quartz Tuning Fork in Superfluid 4He
    Bradley, D. I.
    Fear, M. J.
    Fisher, S. N.
    Guenault, A. M.
    Haley, R. P.
    Lawson, C. R.
    McClintock, P. V. E.
    Pickett, G. R.
    Schanen, R.
    Tsepelin, V.
    Wheatland, L. A.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2009, 156 (3-6) : 116 - 131