Due to ever increasing public awareness of the deteriorating planetary health condition associated with climate change and increasing carbon emissions, sustainable energy development has come sharply into focus. Here, a thermoelectric material is produced, which consists of macroscopic carbon nanotube yarns (CNTYs) produced continuously from the gas-phase. The CNTYs are doped with lignin, obtained from lignocellulosic waste, and at 23 wt% lignin, electrical conductivity and the Seebeck coefficient are approximately doubled when compared to pristine CNTY samples. As a consequence, the power factor is remarkably improved to 132.2 mu W m(-1)K(-2), more than six times that of the pristine CNTY. A thermoelectric generator device is manufactured, comprising 20 CNTY/lignin nanocomposite yarns, and they exhibit a maximum power output of 3.8 mu W, at a temperature gradient of 30 K.