共 33 条
Distinct properties of the two putative "globular domains" of the yeast linker histone, Hho1p
被引:18
|作者:
Ali, T
Thomas, JO
机构:
[1] Univ Cambridge, Cambridge Ctr Mol Recognit, Cambridge CB2 1GA, England
[2] Univ Cambridge, Dept Biochem, Cambridge CB2 1GA, England
基金:
英国生物技术与生命科学研究理事会;
关键词:
chromatin;
chromatosome;
four-way junction;
intrinsically unstructured domain;
linker histone;
D O I:
10.1016/j.jmb.2004.02.029
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
The putative linker histone in Saccharomyces cerevisiae, Hho1p, has two regions of sequence (GI and GII) that are homologous to the single globular domains of linker histones H1 and H5 in higher eukaryotes. However, the two Hho1p "domains" differ with respect to the conservation of basic residues corresponding to the two putative DNA-binding sites (sites I and II) on opposite faces of the H5 globular domain. We find that GI can protect chromatosome-length DNA, like the globular domains of H1 and H5 (GH1 and GH5), but GII does not protect. However, GII, like GH1 and GH5, binds preferentially (and with higher affinity than GI) to four-way DNA junctions in the presence of excess linear DNA competitor, and binds more tightly than GI to linker-histonc-depleted chromatin. Surprisingly, in 10 mM sodium phosphate (pH 7.0), GII is largely unfolded, whereas GI, like GH1 and GH5, is structured, with a high a-helical content. However, in the presence of high concentrations of large tetrahedral anions (phosphate, sulphate, perchlorate) GII is also folded; the anions presumably mimic DNA in screening the positive charge. This raises the possibility that chromatin-bound Hho1p may be bifunctional, with two folded nucleosome-binding domains. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1123 / 1135
页数:13
相关论文