Kolmogorov-Sinai entropy for the A+B→P reaction in transitional flows

被引:0
|
作者
Rogberg, P [1 ]
Cvetkovic, V
机构
[1] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[2] Royal Inst Technol, S-10044 Stockholm, Sweden
来源
JOURNAL OF CHEMICAL PHYSICS | 2004年 / 120卷 / 14期
关键词
D O I
10.1063/1.1665578
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study global decay of the bimolecular reaction A+B-->P as c(t)similar tot(-alpha) in a nonlinear transitional flow. A relationship is established between the decay exponent alpha, and a modified Kolmogorov-Sinai entropy, h(r). We find that for dynamic conditions which induce relatively strong mixing, the decay exponent is alphaproportional toln psi(r)(-Bh) with B being a characteristic reactive mix-down time for the system, and psi is a space-time scaling parameter. Dynamic conditions which imply weak mixing lead to a degenerate dependence of alpha on h(r). The proposed relationship between alpha on h(r) should be a useful link between the dynamical evolution of the flow field and reaction kinetics in vortex dominated flows. (C) 2004 American Institute of Physics.
引用
收藏
页码:6423 / 6429
页数:7
相关论文
共 50 条
  • [31] Detrended fluctuation analysis and Kolmogorov-Sinai entropy of electroencephalogram signals
    Lim, Jung Ho
    Khang, Eun Joo
    Lee, Tae Hyun
    Kim, In Hye
    Maeng, Seong Eun
    Lee, Jae Woo
    PHYSICS LETTERS A, 2013, 377 (38) : 2542 - 2545
  • [32] Kolmogorov-Sinai entropy for locally coupled piecewise linear maps
    Batista, AM
    Viana, RL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 308 (1-4) : 125 - 134
  • [33] KOLMOGOROV-SINAI TYPE LOGICAL ENTROPY FOR GENERALIZED SIMULTANEOUS MEASUREMENTS
    Shukla, Anurag
    Khare, Mona
    Pandey, Pratibha
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 21 - 40
  • [34] Kolmogorov-Sinai entropy of many-body Hamiltonian systems
    Lakshminarayan, Arul
    Tomsovic, Steven
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [35] Kolmogorov-Sinai entropy and dissipation in driven classical Hamiltonian systems
    Capela, Matheus
    Sanz, Mikel
    Solano, Enrique
    Celeri, Lucas C.
    PHYSICAL REVIEW E, 2018, 98 (05):
  • [36] Ordinal Pattern Based Entropies and the Kolmogorov-Sinai Entropy: An Update
    Gutjahr, Tim
    Keller, Karsten
    ENTROPY, 2020, 22 (01) : 63
  • [37] Kolmogorov-Sinai entropy for dilute systems of hard particles in equilibrium
    de Wijn, AS
    PHYSICAL REVIEW E, 2005, 71 (04):
  • [38] Universal relation between the Kolmogorov-Sinai entropy and the thermodynamical entropy in simple liquids
    Dzugutov, M
    Aurell, E
    Vulpiani, A
    PHYSICAL REVIEW LETTERS, 1998, 81 (09) : 1762 - 1765
  • [39] Kolmogorov-Sinai entropy in self-consistent models of barred galaxies
    Wozniak, H
    Pfenniger, D
    XVTH IAP MEETING DYNAMICS OF GALAXIES: FROM THE EARLY UNIVERSE TO THE PRESENT, 2000, 197 : 77 - 78