An Application of Rabotnov Functions on Certain Subclasses of Bi-Univalent Functions

被引:7
|
作者
Amourah, Ala [1 ]
Aldawish, Ibtisam [2 ]
Alhindi, Khadeejah Rasheed [3 ]
Frasin, Basem Aref [4 ]
机构
[1] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid 21110, Jordan
[2] Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, IMSIU, Riyadh 11564, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Sci, POB 1982, Dammam 31441, Saudi Arabia
[4] Al Al Bayt Univ, Fac Sci, Dept Math, Mafraq 25113, Jordan
关键词
Rabotnov functions; bi-univalent; Taylor series; Fekete-Szego; Gegenbauer polynomials;
D O I
10.3390/axioms11120680
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, a new class R (mu)(sigma)(x, gamma, alpha, delta, beta) of bi-univalent functions studied by means of Gegenbauer polynomials (GP) with Rabotnov functions is introduced. The coefficient of the Taylor coefficients |a(2)|and |a(3)| and Fekete-Szego problems for functions belonging to R (mu)(sigma)(x, gamma, alpha, delta, beta) have been derived as well. Furthermore, a variety of new results will appear by considering the parameters in the main results.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS RELATED TO k-FIBONACCI NUMBERS
    Guney, H. Ozlem
    Murugusundaramoorthy, G.
    Sokol, J.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 1909 - 1921
  • [32] Certain Subclasses of Bi-Univalent Functions Defined by (p, q)-Differential Operator
    Rmsen, A. A. A.
    Shivarudrappa, H. L.
    Ravikumar, N.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (04): : 745 - 753
  • [33] Subclasses of bi-univalent functions subordinate to gegenbauer polynomials
    Ala Amourah
    Zabidin Salleh
    B. A. Frasin
    Muhammad Ghaffar Khan
    Bakhtiar Ahmad
    Afrika Matematika, 2023, 34
  • [34] New Subclasses of Bi-univalent functions Involving Poly logarithm Functions
    Siregar, Saibah
    Darus, Maslina
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 893 - 898
  • [35] Subclasses of bi-univalent functions subordinate to gegenbauer polynomials
    Amourah, Ala
    Salleh, Zabidin
    Frasin, B. A.
    Khan, Muhammad Ghaffar
    Ahmad, Bakhtiar
    AFRIKA MATEMATIKA, 2023, 34 (03)
  • [36] Cofficient Bounds for Subclasses of Analytic and Bi-Univalent Functions
    Alimohammadi, Davood
    Cho, Nak Eun
    Adegani, Ebrahim Analouei
    FILOMAT, 2020, 34 (14) : 4709 - 4721
  • [37] Coefficient Estimates for Some Subclasses of Bi-univalent Functions
    Hern, Andy Liew Pik
    Janteng, Aini
    4TH INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES (ICMS4): MATHEMATICAL SCIENCES: CHAMPIONING THE WAY IN A PROBLEM BASED AND DATA DRIVEN SOCIETY, 2017, 1830
  • [38] Coefficient bounds for new subclasses of bi-univalent functions
    Caglar, Murat
    Orhan, Halit
    Yagmur, Nihat
    FILOMAT, 2013, 27 (07) : 1165 - 1171
  • [39] Certain New Subclasses Of Analytic And m-Fold Symmetric Bi-Univalent Functions
    Wanas, Abbas Kareem
    Majeed, Abdulrahman H.
    APPLIED MATHEMATICS E-NOTES, 2018, 18 : 178 - 188
  • [40] Coefficient Bounds of m-Fold Symmetric Bi-Univalent Functions for Certain Subclasses
    Shehab, Nihad Hameed
    Juma, Abdul Rahman S.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 71 - 82