Nonparametric Estimation of Volatility Function with Variable Bandwidth Parameter

被引:2
|
作者
Ye, Xuguo [1 ]
Ling, Nengxiang [2 ]
机构
[1] Kaili Univ, Sch Math Sci, Kaili 556011, Peoples R China
[2] Hefei Univ Technol, Sch Math, Hefei, Peoples R China
关键词
TERM STRUCTURE; MODEL;
D O I
10.1080/03610926.2011.650266
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we introduce a new method for the volatility function estimation of continuous-time diffusion process dXt = μ(X t)dt + σ(X t)dWt, which is based on combining the idea of local linear smoother and variable bandwidth. We give the expressions for the conditional MSE and MISE of the estimator and obtain the optimal variable bandwidth. An explicit formula for the optimal variable bandwidth is presented by minimizing the MISE, which extends the related results in Fan and Gijbels (1992), etc. Finally, some simulations show that the performance of the proposed estimator with optimal variable bandwidth is often much better than that of the local linear estimator with invariable bandwidth. © 2013 Taylor and Francis Group, LLC.
引用
收藏
页码:4525 / 4539
页数:15
相关论文
共 50 条
  • [41] Nonparametric estimation of volatility models with serially dependent innovations
    Dahl, Christian M.
    Levine, Michael
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (18) : 2007 - 2016
  • [42] Tilted Nonparametric Estimation of Volatility Functions With Empirical Applications
    Xu, Ke-Li
    Phillips, Peter C. B.
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2011, 29 (04) : 518 - 528
  • [43] Nonparametric realized volatility estimation in the international equity markets
    Vortelinos, Dimitrios I.
    Thomakos, Dimitrios D.
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2013, 28 : 34 - 45
  • [44] Nonparametric volatility density estimation for discrete time models
    Van Es, B
    Spreij, P
    Van Zanten, H
    JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (02) : 237 - 251
  • [46] Nonparametric estimation of volatility functions: The local exponential estimator
    Ziegelmann, FA
    ECONOMETRIC THEORY, 2002, 18 (04) : 985 - 991
  • [47] Nonparametric estimation of a latent variable model
    Kelava, Augustin
    Kohler, Michael
    Krzyzak, Adam
    Schaffland, Tim Fabian
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 : 112 - 134
  • [48] Nonparametric instrumental-variable estimation
    Chetverikov, Denis
    Kim, Dongwoo
    Wilhelm, Daniel
    STATA JOURNAL, 2018, 18 (04): : 937 - 950
  • [49] Nonparametric instrumental variable derivative estimation
    Florens, J. P.
    Racine, J. S.
    Centorrino, S.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (02) : 368 - 391
  • [50] Instrumental variable estimation of nonparametric models
    Newey, WK
    Powell, JL
    ECONOMETRICA, 2003, 71 (05) : 1565 - 1578