A Bayesian Approach to Single Particle Tracking Analysis

被引:1
|
作者
Persson, Fredrik [1 ]
Linden, Martin [2 ]
Unosson, Cecilia [1 ]
Elf, Johan [1 ]
机构
[1] Uppsala Univ, Uppsala, Sweden
[2] Stockholm Univ, S-10691 Stockholm, Sweden
关键词
D O I
10.1016/j.bpj.2012.11.998
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
引用
收藏
页码:177A / 177A
页数:1
相关论文
共 50 条
  • [22] Scalable Approximate Bayesian Inference for Particle Tracking Data
    Sun, Ruoxi
    Paninski, Liam
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [23] A time-varying approach to single particle tracking with a nonlinear observation model
    Godoy, Boris, I
    Lin, Ye
    Andersson, Sean B.
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 5151 - 5156
  • [24] A precise nanoparticle quantification approach using microfluidics and single-particle tracking
    Buescher, Johannes
    John, Thomas
    Boehm, Anna K.
    Weber, Louis
    Abdel-Hafez, Salma M.
    Wagner, Christian
    Kraus, Tobias
    Gallei, Markus
    Schneider, Marc
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2022, 75
  • [25] Particle identification in ALICE: a Bayesian approach
    Adam, J.
    Adamova, D.
    Aggarwal, M. M.
    Rinella, G. Aglieri
    Agnello, M.
    Agrawal, N.
    Ahammed, Z.
    Ahmad, S.
    Ahn, S. U.
    Aiola, S.
    Akindinov, A.
    Alam, S. N.
    Albuquerque, D. S. D.
    Aleksandrov, D.
    Alessandro, B.
    Alexandre, D.
    Alfaro Molina, R.
    Alici, A.
    Alkin, A.
    Almaraz, J. R. M.
    Alme, J.
    Alt, T.
    Altinpinar, S.
    Altsybeev, I.
    Alves Garcia Prado, C.
    Andrei, C.
    Andronic, A.
    Anguelov, V.
    Anticic, T.
    Antinori, F.
    Antonioli, P.
    Aphecetche, L.
    Appelshaeuser, H.
    Arcelli, S.
    Arnaldi, R.
    Arnold, O. W.
    Arsene, I. C.
    Arslandok, M.
    Audurier, B.
    Augustinus, A.
    Averbeck, R.
    Azmi, M. D.
    Badala, A.
    Baek, Y. W.
    Bagnasco, S.
    Bailhache, R.
    Bala, R.
    Balasubramanian, S.
    Baldisseri, A.
    Baral, R. C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (05):
  • [26] Particle identification in ALICE: a Bayesian approach
    J. Adam
    D. Adamová
    M. M. Aggarwal
    G. Aglieri Rinella
    M. Agnello
    N. Agrawal
    Z. Ahammed
    S. Ahmad
    S. U. Ahn
    S. Aiola
    A. Akindinov
    S. N. Alam
    D. S. D. Albuquerque
    D. Aleksandrov
    B. Alessandro
    D. Alexandre
    R. Alfaro Molina
    A. Alici
    A. Alkin
    J. R. M. Almaraz
    J. Alme
    T. Alt
    S. Altinpinar
    I. Altsybeev
    C. Alves Garcia Prado
    C. Andrei
    A. Andronic
    V. Anguelov
    T. Antičić
    F. Antinori
    P. Antonioli
    L. Aphecetche
    H. Appelshäuser
    S. Arcelli
    R. Arnaldi
    O. W. Arnold
    I. C. Arsene
    M. Arslandok
    B. Audurier
    A. Augustinus
    R. Averbeck
    M. D. Azmi
    A. Badalà
    Y. W. Baek
    S. Bagnasco
    R. Bailhache
    R. Bala
    S. Balasubramanian
    A. Baldisseri
    R. C. Baral
    The European Physical Journal Plus, 131
  • [27] Bayesian approach to single-cell differential expression analysis
    Kharchenko, Peter V.
    Silberstein, Lev
    Scadden, David T.
    NATURE METHODS, 2014, 11 (07) : 740 - U184
  • [28] High Density Single Particle Tracking Using Bayesian Multi-Fluorophore Fitting through Vertices
    Huang, Fang
    Lidke, Keith A.
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 589A - 589A
  • [29] Bridging the Gap Between PALM and Qdots Single Particle Tracking using Bayesian Inference and the Gillespie Scheme
    Masson, Jean-baptiste
    el Beheiry, Mohamed
    Salvatico, Charlotte
    Renner, Marianne
    Specht, Christian G.
    Triller, Antoine
    Dahan, Maxime
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 808A - 809A
  • [30] Bayesian approach to single-cell differential expression analysis
    Kharchenko P.V.
    Silberstein L.
    Scadden D.T.
    Nature Methods, 2014, 11 (7) : 740 - 742