Hydrogen Evolution Reaction on Hybrid Catalysts of Vertical MoS2 Nanosheets and Hydrogenated Graphene

被引:191
|
作者
Han, Xiuxiu [1 ,2 ]
Tong, Xili [1 ]
Liu, Xingchen [1 ]
Chen, Ai [3 ]
Wen, Xiaodong [1 ]
Yang, Nianjun [1 ,4 ]
Guo, Xiang-Yun [1 ]
机构
[1] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Shanxi, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Shanxi Med Univ, Hosp 1, Taiyuan 030001, Shanxi, Peoples R China
[4] Univ Siegen, Inst Mat Engn, D-57076 Siegen, Germany
来源
ACS CATALYSIS | 2018年 / 8卷 / 03期
关键词
hydrogen evolution reaction; MoS2; nanosheets; hydrogenated graphene; solvotherrnal synthesis; hydrogen adsorption energy; ACTIVE EDGE SITES; ULTRATHIN NANOSHEETS; CARBON NANOTUBES; EFFICIENT; TRANSITION; GROWTH; ELECTROCATALYST; SURFACE; COBALT; NANOPARTICLES;
D O I
10.1021/acscatal.7b03316
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional (2D) molybdenum sulfide (MoS2) is an attractive noble-metal-free electrocatalyst for hydrogen evolution (HER) in acids. Tremendous effort has been made to engineer MoS2 catalysts with either more active sites or higher conductivity to enhance their HER activity. However, little attention has been paid to synergistically structural and electronic modulations of MoS2. Herein, 2D hydrogenated graphene (HG) is introduced into MoS2 ultrathin nanosheets for the construction of a highly efficient and stable catalyst for HER Owing to synergistic modulations of both structural and electronic benefits to MoS2 nanosheets via HG support, such a catalyst has improved conductivity, more accessible catalytic active sites, and moderate hydrogen adsorption energy. On the optimized MoS2/HG hybrid catalyst, HER occurs with an overpotential of 124 mV at 10 mA cm(-2), a Tafel slope of 41 mV dec(-1), and a stable durability for 24 h continuous operation at 30 mA cm(-2) without observable fading. The high performance of the optimized MoS2/HG hybrid catalyst for HER was interpreted with density functional theory calculations. The simulation results reveal that the introduction of HG modulates the electronic structure of MoS2 to increase the number of active sites and simultaneously optimizes the hydrogen adsorption energy at S-edge atoms, eventually promoting HER activity. This study thus provides a strategy to design and develop high-performance HER electrocatalysts by employing different 2D materials.
引用
收藏
页码:1828 / 1836
页数:17
相关论文
共 50 条
  • [31] MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction
    Li, Yanguang
    Wang, Hailiang
    Xie, Liming
    Liang, Yongye
    Hong, Guosong
    Dai, Hongjie
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (19) : 7296 - 7299
  • [32] Hydrothermal synthesis of 2D MoS2 nanosheets for electrocatalytic hydrogen evolution reaction
    Muralikrishna, S.
    Manjunath, K.
    Samrat, D.
    Reddy, Viswanath
    Ramakrishnappa, T.
    Nagaraju, D. H.
    RSC ADVANCES, 2015, 5 (109) : 89389 - 89396
  • [33] Vertically aligned MoS2 nanosheets on graphene for highly stable electrocatalytic hydrogen evolution reactions
    Gnanasekar, Paulraj
    Periyanagounder, Dharmaraj
    Kulandaivel, Jeganathan
    NANOSCALE, 2019, 11 (05) : 2439 - 2446
  • [34] Efficient Hydrogen Evolution by Mechanically Strained MoS2 Nanosheets
    Lee, Ji Hoon
    Jang, Woo Soon
    Han, Sun Woong
    Baik, Hong Koo
    LANGMUIR, 2014, 30 (32) : 9866 - 9873
  • [35] Facile Construction of MoS2/CNFs Hybrid Structure for a Hydrogen Evolution Reaction
    Li, Jiang
    Wu, WeiWei
    Wan, Meng
    Gu, Li
    Wang, Juan
    Li, Tao
    Zhu, Han
    Zhang, Ming
    Du, MingLiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (05): : 4563 - 4573
  • [36] Hierarchical composite structure of few-layers MoS2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction
    Zhang, Zhenyu
    Li, Wenyue
    Yuen, Muk Fung
    Ng, Tsz-Wai
    Tang, Yongbing
    Lee, Chun-Sing
    Chen, Xianfeng
    Zhang, Wenjun
    NANO ENERGY, 2015, 18 : 196 - 204
  • [37] One Pot Assembly of Vertical Embedded MoS2/Graphene Heterostructure and Its High Performance for Hydrogen Evolution Reaction
    Li, Liang
    Li, Jinxin
    Liu, Lili
    Wang, Xinran
    Guo, Ying
    Zhou, Yajun
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (02) : 1413 - 1418
  • [38] Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts
    Wang, Dezhi
    Pan, Zhou
    Wu, Zhuangzhi
    Wang, Zhiping
    Liu, Zhihong
    JOURNAL OF POWER SOURCES, 2014, 264 : 229 - 234
  • [39] Fundamental understanding of optimal interlayer spacing of MoS2 catalysts for hydrogen evolution reaction
    Jin, Qiu
    Liu, Ning
    Chen, Biaohua
    Mei, Donghai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [40] Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution
    Wu, Liqian
    Xu, Xiaobing
    Zhao, Yuqi
    Zhang, Kaiyu
    Sun, Yuan
    Wang, Tingting
    Wang, Yuanqi
    Zhong, Wei
    Du, Youwei
    APPLIED SURFACE SCIENCE, 2017, 425 : 470 - 477