k-Ordered Hamilton cycles in digraphs

被引:5
|
作者
Kuehn, Daniela [1 ]
Cisthus, Deryk [1 ]
Young, Andrew [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Hamilton cycles; Directed graphs; Ordered cycles; Linkedness;
D O I
10.1016/j.jctb.2008.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a digraph D. let delta(0)(D) := min{delta(+)(D), delta(-)(D)} be the minimum semi-degree of D. D is k-ordered Hamiltonian if for every sequence s(l).....s(k) of distinct vertices of D there is a directed Hamilton cycle which encounters s(l.).....s(k) in this order. Our main result is that every digraph D of sufficiently large order n with delta(0)(D) >= [(n + k)/2] - I is k-ordered Hamiltonian. The bound oil the minimum semi-degree is best possible. An undirected version of this result was proved earlier by Kierstead, Sarkozy and Selkow [H. Kierstead. G. Sarkozy. S. Selkow, On k-ordered Hamiltonian graphs, J. Graph Theory 32 (1999) 17-25]. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1165 / 1180
页数:16
相关论文
共 50 条
  • [41] On k-ordered bipartite graphs -: art. no. R11
    Faudree, JR
    Gould, RJ
    Pfender, F
    Wolf, A
    ELECTRONIC JOURNAL OF COMBINATORICS, 2003, 10 (01):
  • [42] Locally semicomplete digraphs with a factor composed of k cycles
    Gould, RJ
    Guo, YB
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2004, 41 (05) : 895 - 912
  • [43] Cycles with two blocks in k-chromatic digraphs
    Kim, Ringi
    Kim, Seog-Jin
    Ma, Jie
    Park, Boram
    JOURNAL OF GRAPH THEORY, 2018, 88 (04) : 592 - 605
  • [44] K-Factors and Hamilton Cycles in Graphs
    Zhi Guo WANG
    Zhen Jiang ZHAO
    ActaMathematicaSinica(EnglishSeries), 2007, 23 (02) : 309 - 312
  • [45] K-Factors and Hamilton Cycles in Graphs
    Zhi Guo Wang
    Zhen Jiang Zhao
    Acta Mathematica Sinica, English Series, 2007, 23 : 309 - 312
  • [46] K-factors and Hamilton cycles in graphs
    Wang, Zhi Guo
    Zhao, Zhen Jiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (02) : 309 - 312
  • [47] Hamilton Powers of Eulerian Digraphs
    Colon, Enrico Celestino
    Urschel, John
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (02):
  • [48] Maximal sets of Hamilton cycles in K n,n
    Bryant, DE
    El-Zanati, S
    Rodger, CA
    JOURNAL OF GRAPH THEORY, 2000, 33 (01) : 25 - 31
  • [49] DEGREES AND CYCLES IN DIGRAPHS
    HEYDEMANN, MC
    DISCRETE MATHEMATICS, 1982, 41 (03) : 241 - 251
  • [50] Cycles in dense digraphs
    Chudnovsky, Maria
    Seymour, Paul
    Sullivan, Blair
    COMBINATORICA, 2008, 28 (01) : 1 - 18