Efficiency and budget balance in general quasi-linear domains

被引:8
|
作者
Nath, Swaprava [1 ]
Sandholm, Tuomas [2 ]
机构
[1] Indian Inst Technol Kanpur, Kanpur, Uttar Pradesh, India
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Quasi-linear preferences; Efficiency; Budget balance; Affine maximizer; Green-Laffont impossibility; INCENTIVES; MECHANISMS;
D O I
10.1016/j.geb.2018.11.010
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider efficiency and budget balance in general quasi-linear domains. Green and Laffont (1979) proved that one cannot generically achieve both. We consider strategyproof budget-balanced mechanisms with bounded valuations that are approximately efficient. We show that a deterministic, strategyproof, and budget-balanced mechanism must have a sink whose valuation is ignored in the decision, and is compensated with all the leftover money. We find a tight lower bound on the inefficiencies of strategyproof, budget-balanced mechanisms using this result. The bound shows that the inefficiency asymptotically disappears when the number of agents is large-we provide worst-case bounds and the best possible rate of convergence. We provide results for convex combination of inefficiency and budget imbalance and for randomized mechanisms. Experiments with real data from two applications show that the inefficiency for a simple randomized mechanism is 5-100 times smaller than the worst case. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:673 / 693
页数:21
相关论文
共 50 条
  • [41] QUASI-LINEAR CONTROLLABLE INDUCTOR
    KISLOVSKI, AS
    PROCEEDINGS OF THE IEEE, 1987, 75 (02) : 267 - 269
  • [42] The quasi-linear nearby Universe
    Hoffman, Yehuda
    Carlesi, Edoardo
    Pomarede, Daniel
    Tully, R. Brent
    Courtois, Helene M.
    Gottloeber, Stefan
    Libeskind, Noam, I
    Sorce, Jenny G.
    Yepes, Gustavo
    NATURE ASTRONOMY, 2018, 2 (08): : 680 - 687
  • [43] Quasi-linear formulation of MOND
    Milgrom, Mordehai
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 403 (02) : 886 - 895
  • [44] QUENCHING FOR QUASI-LINEAR EQUATIONS
    FILA, M
    KAWOHL, B
    LEVINE, HA
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) : 593 - 614
  • [45] QUASI-LINEAR QMV ALGEBRAS
    GIUNTINI, R
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (08) : 1397 - 1407
  • [46] ON QUASI-LINEAR PARABOLIC EQUATIONS
    IKEDA, Y
    NAGOYA MATHEMATICAL JOURNAL, 1967, 30 (AUG) : 163 - &
  • [47] KAM for quasi-linear KdV
    Baldi, Pietro
    Berti, Massimiliano
    Montalto, Riccardo
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (7-8) : 603 - 607
  • [48] Quasi-linear wavelet estimation
    Efromovich, S
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (445) : 189 - 204
  • [49] QUASI-LINEAR COMPRESSED SENSING
    Ehler, Martin
    Fornasier, Massimo
    Sigl, Juliane
    MULTISCALE MODELING & SIMULATION, 2014, 12 (02): : 725 - 754
  • [50] RESONANCE AND QUASI-LINEAR ELLIPTICITY
    SHAPIRO, VL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 294 (02) : 567 - 584