The generalized stable equivalence problem

被引:0
|
作者
Drylo, Robert [1 ,2 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00950 Warsaw, Poland
[2] Warsaw Sch Econ, PL-02554 Warsaw, Poland
关键词
Algebraic varieties; Polynomial automorphisms; Stable equivalence; VARIETIES;
D O I
10.1016/j.jalgebra.2012.08.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we study the following problem. Let k be an algebraically closed field and X be an affine variety over k. Suppose that H-1, H-2 subset of X are two hypersurfaces such that there exists an automorphism f of X x k(n) satisfying f (H-1 x k(n)) = H-2 X k(n) for some n > 0. Does this imply that there exists an automorphism (f) over tilde of X such that (f) over tilde (H-1) = H-2? We give an affirmative solution if one hypersurface is not k-uniruled and a counterexample in general. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:554 / 558
页数:5
相关论文
共 50 条
  • [21] STABLE EQUIVALENCE AND THE STABLE TRIANGLE CATEGORY
    WHEELER, WW
    JOURNAL OF ALGEBRA, 1993, 157 (01) : 116 - 127
  • [22] A generalized equivalence principle
    Lyre, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2000, 9 (06): : 633 - 647
  • [23] The equivalence problem
    Karlhede, Anders
    GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (06) : 1109 - 1114
  • [24] PROBLEM IN EQUIVALENCE
    METZLER, CM
    BIOMETRICS, 1972, 28 (04) : 1176 - 1176
  • [25] The equivalence problem
    Anders Karlhede
    General Relativity and Gravitation, 2006, 38 : 1109 - 1114
  • [26] Generalized stuttering equivalence
    Jha, S
    Peled, D
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, PROCEEDINGS, 1999, : 1054 - 1060
  • [27] GENERALIZED EQUIVALENCE RULES
    PROKHOROV, LV
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA FIZIKA KHIMIYA, 1982, (01): : 106 - 108
  • [28] GENERALIZED PRINCIPLE OF EQUIVALENCE
    THYSSENB.S
    GRAYSON, HW
    PURE AND APPLIED GEOPHYSICS, 1973, 110 (09) : 1911 - 1917
  • [29] MORITA EQUIVALENCE AND THE GENERALIZED
    Bischoff, Francis
    Gualtieri, Marco
    Zabzine, Maxim
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2022, 121 (02) : 187 - 226
  • [30] STABLE BIDIMENSIONAL MAGNETOHYDRODYNAMIC MODEL FOR THE GENERALIZED BOUNDARY-PROBLEM
    SERMANGE, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1983, 62 (02): : 153 - 176