Damage progression study in fibre reinforced concrete using acoustic emission technique

被引:9
|
作者
Banjara, Nawal Kishor [1 ]
Sasmal, Saptarshi [1 ]
Srinivas, V [1 ]
机构
[1] CSIR Struct Engn Res Ctr, SMSL, Chennai 600113, India
关键词
acoustic emission; fracture energy; fracture process zone; fibre reinforced concrete; wave transformation; HHT; FRACTURE ENERGY; SIZE; IDENTIFICATION; BEHAVIOR; PLAIN;
D O I
10.12989/sss.2019.23.2.173
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The main objective of this study is to evaluate the true fracture energy and monitor the damage progression in steel fibre reinforced concrete (SFRC) specimens using acoustic emission (AE) features. Four point bending test is carried out using pre-notched plain and fibre reinforced (0.5% and 1% volume fraction) - concrete under monotonic loading. AE sensors are affixed at different locations of the specimens and AE parameters such as rise time, AE energy, hits, counts, amplitude and duration etc. are obtained. Using the captured and processed AE event data, fracture process zone is identified and the true fracture energy is evaluated. The AE data is also employed for tracing the damage progression in plain and fibre reinforced concrete, using both parametric- and signal- based techniques. Hilbert - Huang transform (HHT) is used in signal based processing for evaluating instantaneous frequency of the acoustic events. It is found that the appropriately processed and carefully analyzed acoustic data is capable of providing vital information on progression of damage on different types of concrete.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [31] Acoustic emission characterization of steel fibre reinforced concrete during bending
    Aggelis, D. G.
    Soulioti, D. V.
    Sapouridis, N.
    Barkoula, N. M.
    Paipetis, A. S.
    Matikas, T. E.
    NONDESTRUCTIVE CHARACTERIZATION FOR COMPOSITE MATERIALS, AEROSPACE ENGINEERING, CIVIL INFRASTRUCTURE, AND HOMELAND SECURITY 2010, 2010, 7649
  • [32] Damage assessment of reinforced concrete beams qualified by acoustic emission
    Ohtsu, M
    Uchida, M
    Okamoto, T
    Yuyama, S
    ACI STRUCTURAL JOURNAL, 2002, 99 (04) : 411 - 417
  • [33] Evaluation of fatigue damage in reinforced concrete slab by acoustic emission
    Yuyama, S
    Li, ZW
    Yoskizawa, M
    Tomokiyo, T
    Uomoto, T
    NDT & E INTERNATIONAL, 2001, 34 (06) : 381 - 387
  • [34] Evaluation of fatigue damage in reinforced concrete slabs by acoustic emission
    Yuyama, S.
    Li, Z.-W.
    Yoshizawa, M.
    Tomokiyo, T.
    Uomoto, T.
    Insight: Non-Destructive Testing and Condition Monitoring, 2000, 42 (07): : 439 - 443
  • [35] Evaluation of fatigue damage in reinforced concrete slab by acoustic emission
    Yuyama, S
    Li, ZW
    Yoshizawa, M
    Tomokiyo, T
    Uomoto, T
    NON-DESTRUCTIVE TESTING IN CIVIL ENGINEERING 2000: SEIKEN SYMPOSIUM NO. 26, 2000, : 283 - 292
  • [36] Acoustic emission investigations of the damage zone in steel fibre reinforced beams
    Weiler, B
    Grosse, C
    Reinhardt, HW
    HIGH PERFORMANCE FIBER REINFORCED CEMENT COMPOSITES (HPFRCC3), 1999, 6 : 487 - 496
  • [37] Experimental study of creep-damage coupling in concrete by acoustic emission technique
    Saliba, J.
    Loukili, A.
    Grondin, F.
    Regoin, J. -P.
    MATERIALS AND STRUCTURES, 2012, 45 (09) : 1389 - 1401
  • [38] Experimental study of creep-damage coupling in concrete by acoustic emission technique
    J. Saliba
    A. Loukili
    F. Grondin
    J.-P. Regoin
    Materials and Structures, 2012, 45 : 1389 - 1401
  • [39] Cellulose Fiber Reinforced Concrete Fracture Mechanisms and Damage Detection Using Acoustic Emission
    Chen, Yu
    Bloomquist, David
    Crowley, Raphael
    MEASUREMENT TECHNOLOGY AND ITS APPLICATION, PTS 1 AND 2, 2013, 239-240 : 3 - +
  • [40] Damage analysis in steel fibre reinforced concrete under monotonic and cyclic bending by means of acoustic emission monitoring
    De Smedt, Maure
    Vrijdaghs, Rutger
    Van Steen, Charlotte
    Verstrynge, Els
    Vandewalle, Lucie
    CEMENT & CONCRETE COMPOSITES, 2020, 114