SELECTIVE SIGN-DETERMINING MULTIPLE CONFIDENCE INTERVALS WITH FCR CONTROL

被引:6
|
作者
Weinstein, Asaf [1 ]
Yekutieli, Daniel [2 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] Tel Aviv Univ, Sch Math Sci, Dept Stat & Operat Res, IL-69978 Tel Aviv, Israel
基金
英国惠康基金;
关键词
Confidence intervals; directional decisions; false coverage rate; false discovery rate; selective inference; multiplicity; POWER;
D O I
10.5705/ss.202017.0316
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given m unknown parameters with corresponding independent estimators, the Benjamini{Hochberg (BH) procedure can be used to classify the signs of the parameters, such that the expected proportion of erroneous directional decisions (directional FDR) is controlled at a preset level q. More ambitiously, our goal is to construct sign-determining confidence intervals-instead of only classifying the sign-such that the expected proportion of noncovering constructed intervals (FCR) is controlled. We suggest a valid procedure that adjusts a marginal confidence interval to construct a maximum number of sign-determining confidence intervals. We propose a new marginal confidence interval, designed specifically for our procedure, that allows us to balance the trade-off between the power and the length of the constructed intervals. We apply our methods to detect the signs of correlations in a highly publicized social neuroscience study and, in a second example, to detect the direction of association for SNPs with Type-2 diabetes in GWAS data. In both examples, we compare our procedure to existing methods and obtain encouraging results.
引用
收藏
页码:531 / 555
页数:25
相关论文
共 50 条
  • [31] CONFIDENCE-INTERVALS FOR FLOOD-CONTROL DESIGN
    WHITLEY, RJ
    HROMADKA, TV
    STOCHASTIC HYDROLOGY AND HYDRAULICS, 1988, 2 (02): : 151 - 155
  • [32] Obtaining critical values for simultaneous confidence intervals and multiple testing
    Somerville, PN
    Bretz, F
    BIOMETRICAL JOURNAL, 2001, 43 (05) : 657 - 663
  • [33] CONFIDENCE INTERVALS FOR MULTIPLE ISOTONIC REGRESSION AND OTHER MONOTONE MODELS
    Deng, Hang
    Han, Qiyang
    Zhang, Cun-Hui
    ANNALS OF STATISTICS, 2021, 49 (04): : 2021 - 2052
  • [34] Confidence intervals for an effect size measure in multiple linear regression
    Algina, James
    Keselman, H. J.
    Penfield, Randall D.
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2007, 67 (02) : 207 - 218
  • [35] Estimators of the multiple correlation coefficient: local robustness and confidence intervals
    Croux, C
    Dehon, C
    STATISTICAL PAPERS, 2003, 44 (03) : 315 - 334
  • [36] CONFIDENCE INTERVALS FOR ESTIMATION OF THE CONCENTRATION AND BRIGHTNESS OF MULTIPLE DIFFUSING SPECIES
    Abney, Teresa M.
    Wakatsuki, Tetsuro
    Elson, Elliot L.
    Genin, Guy
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE, PTS A AND B, 2012, : 673 - 674
  • [37] CONSTRAINED SIMULTANEOUS CONFIDENCE-INTERVALS FOR MULTIPLE COMPARISONS WITH THE BEST
    HSU, JC
    ANNALS OF STATISTICS, 1984, 12 (03): : 1136 - 1144
  • [38] Stratified Wilson and Newcombe Confidence Intervals for Multiple Binomial Proportions
    Yan, Xin
    Su, Xiao Gang
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2010, 2 (03): : 329 - 335
  • [39] Estimators of the multiple correlation coefficient: Local robustness and confidence intervals
    Cristophe Croux
    Catherine Dehon
    Statistical Papers, 2003, 44 : 315 - 334
  • [40] Confidence Intervals of Interaction Index for Assessing Multiple Drug Interaction
    Lee, J. Jack
    Kong, Maiying
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2009, 1 (01): : 4 - 17