Big data in clinical biochemistry

被引:1
|
作者
Shine, Brian [1 ]
Barth, Julian H. [2 ]
机构
[1] John Radcliffe Hosp, Oxford, England
[2] Leeds Gen Infirm, Leeds, W Yorkshire, England
关键词
D O I
10.1177/0004563218800735
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
引用
收藏
页码:308 / 309
页数:2
相关论文
共 50 条
  • [41] Neuroinflammation - Using Big Data to inform Clinical Practice
    Drexelius, Nina
    [J]. FORTSCHRITTE DER NEUROLOGIE PSYCHIATRIE, 2017, 85 (03) : 126 - 126
  • [42] Clinical Concepts, Coding, and How It Relates to Big Data
    Lim, Michele C.
    Holland, Gary N.
    [J]. JAMA OPHTHALMOLOGY, 2018, 136 (10) : 1191 - 1192
  • [43] Big Data in Designing Clinical Trials: Opportunities and Challenges
    Mayo, Charles S.
    Matuszak, Martha M.
    Schipper, Matthew J.
    Jolly, Shruti
    Hayman, James A.
    Ten Haken, Randall K.
    [J]. FRONTIERS IN ONCOLOGY, 2017, 7
  • [44] MLBCD: A machine learning tool for big clinical data
    Luo G.
    [J]. Health Information Science and Systems, 3 (1)
  • [45] Big Data Clinical Research: Validity, Ethics, and Regulation
    Balas, E. Andrew
    Vernon, Marlo
    Magrabi, Farah
    Gordon, Lynne Thomas
    Sexton, Joanne
    [J]. MEDINFO 2015: EHEALTH-ENABLED HEALTH, 2015, 216 : 448 - 452
  • [46] Clinical judgement in the era of big data and predictive analytics
    Chin-Yee, Benjamin
    Upshur, Ross
    [J]. JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2018, 24 (03) : 638 - 645
  • [47] Big Data and Clinical Research in Traumatic Brain Injury
    Kelly, Michael L.
    [J]. WORLD NEUROSURGERY, 2018, 109 : 465 - 466
  • [48] Redefining big-data clinical trial (BCT)
    Wang, Stephen D.
    Shen, Yaxing
    [J]. ANNALS OF TRANSLATIONAL MEDICINE, 2014, 2 (10)
  • [49] Neuroinflammation - using big data to inform clinical practice
    Dendrou, Calliope A.
    McVean, Cil
    Fugger, Lars
    [J]. NATURE REVIEWS NEUROLOGY, 2016, 12 (12) : 685 - 698
  • [50] 'Big data' deal for diabetes clinical trial modelling
    Charlotte Harrison
    [J]. Nature Reviews Drug Discovery, 2012, 11 : 822 - 822