EEG-based vigilance estimation using extreme learning machines

被引:102
|
作者
Shi, Li-Chen [1 ]
Lu, Bao-Liang [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Ctr Brain Like Comp & Machine Intelligence, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, MOE Microsoft Key Lab Intelligent Comp & Intellig, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Key Lab Scalable Comp & Syst, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Extreme learning machine; L-2 norm penalty; L-1 norm penalty; EEG; Vigilance estimation; ALERTNESS; SYSTEM; REGRESSION; COMPONENT;
D O I
10.1016/j.neucom.2012.02.041
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For many human machine interaction systems, techniques for continuously estimating the vigilance of operators are highly desirable to ensure work safety. Up to now, various signals are studied for vigilance analysis. Among them, electroencephalogram (EEG) is the most commonly used signal. In this paper, extreme learning machine (ELM) and its modifications with L-1 norm and L-2 norm penalties are adopted for EEG-based vigilance estimation. A comparative study on system performance is conducted among ordinary ELM, its modifications, and support vector machines (SVMs). Experimental results show that, compared with SVMs, the ordinary ELM and its modifications can all dramatically speed up the training process while still achieving similar or better vigilance estimation accuracy. In addition, the following three observations have been made from the experiment results: (a) the ordinary ELM and the ELM with L-1 norm penalty (LARS-ELM) are sensitive on the number of hidden nodes; (b) the ELM with L-2 norm penalty (regularized-ELM) and the ELMs with both L-1 norm and L-2 norm penalties (LARS-EN-ELM, TROP-ELM) are stable and insensitive on the number of hidden nodes; and (c) regularized-ELM has a much faster training speed, while LARS-EN-ELM can achieve better vigilance estimation accuracy. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 143
页数:9
相关论文
共 50 条
  • [21] Vigilance Estimation Based on Statistic Learning with One ICA Component of EEG Signal
    Yu, Hongbin
    Lei, Hong-Tao
    NEURAL INFORMATION PROCESSING, PT I, 2011, 7062 : 404 - 412
  • [22] Innovative deep learning models for EEG-based vigilance detection (vol 33, pg 6921, 2021)
    Khessiba, Souhir
    Blaiech, Ahmed Ghazi
    Khalifa, Khaled Ben
    Abdallah, Asma Ben
    Bedoui, Mohamed Hedi
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (01): : 819 - 819
  • [23] EEG-based stress identification and classification using deep learning
    Muhammad Adeel Hafeez
    Sadia Shakil
    Multimedia Tools and Applications, 2024, 83 : 42703 - 42719
  • [24] EEG-based Image Classification using Machine Learning Algorithms
    Kachhia, Jahnavi
    George, Kiran
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 961 - 966
  • [25] EEG-based Emotion Recognition Using Multiple Kernel Learning
    Qian Cai
    Guo-Chong Cui
    Hai-Xian Wang
    Machine Intelligence Research, 2022, 19 : 472 - 484
  • [26] EEG-Based Human Emotion Recognition Using Deep Learning
    1600, Institute of Electrical and Electronics Engineers Inc.
  • [27] EEG-based Depression Identification using A Deep Learning Model
    Wu, Hao
    Liu, Jiyao
    Zhao, Yanxi
    2022 IEEE 6th Conference on Information and Communication Technology, CICT 2022, 2022,
  • [28] Multitask Learning for EEG-Based Biometrics
    Sun, Shiliang
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2743 - 2746
  • [29] EEG-based Emotion Recognition Using Multiple Kernel Learning
    Cai, Qian
    Cui, Guo-Chong
    Wang, Hai-Xian
    MACHINE INTELLIGENCE RESEARCH, 2022, 19 (05) : 472 - 484
  • [30] EEG-based assessment of vigilance regulation in patients with depression, and healthy controls
    Wilk, K.
    Trenner, M.
    Naegler, K.
    Schoenknecht, P.
    Hegerl, U.
    PHARMACOPSYCHIATRY, 2009, 42 (05) : 247 - 247