Collective modes of a two-dimensional Fermi gas at finite temperature

被引:15
|
作者
Mulkerin, Brendan C. [1 ]
Liu, Xia-Ji [1 ]
Hu, Hui [1 ]
机构
[1] Swinburne Univ Technol, Ctr Quantum & Opt Sci, Melbourne, Vic 3122, Australia
基金
澳大利亚研究理事会;
关键词
BOSE-EINSTEIN CONDENSATION; 2; DIMENSIONS; BCS SUPERCONDUCTIVITY; TRANSITION; CROSSOVER; FLUCTUATIONS; PSEUDOGAP;
D O I
10.1103/PhysRevA.97.053612
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We examine the breathing mode of a strongly interacting two-dimensional Fermi gas and the role of temperature on the anomalous breaking of scale invariance. By calculating the equation of state with different many-body T-matrix theories and the virial expansion, we obtain a hydrodynamic equation of the harmonically trapped Fermi gas (with trapping frequency omega(0)) through the local density approximation. By solving the hydrodynamic equations, we determine the breathing mode frequencies as a function of interaction strength and temperature. We find that the breathing mode anomaly depends sensitively on both interaction strength and temperature. In particular, in the strongly interacting regime, we predict a significant downshift of the breathing mode frequency, below the scale invariant value of 2 omega(0), for temperatures of the order of the Fermi temperature.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Remnant Fermi surface in a pseudogap regime of the two-dimensional Hubbard model at finite temperature
    Saikawa, T
    Ferraz, A
    EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (01): : 65 - 74
  • [32] Remnant Fermi surface in a pseudogap regime of the two-dimensional Hubbard model at finite temperature
    T. Saikawa
    A. Ferraz
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 20 : 65 - 74
  • [33] Finite-temperature theory of the trapped two-dimensional Bose gas
    Gies, C
    van Zyl, BP
    Morgan, SA
    Hutchinson, DAW
    PHYSICAL REVIEW A, 2004, 69 (02): : 4
  • [34] Density profile of a strictly two-dimensional Bose gas at finite temperature
    Rajagopal, KK
    Vignolo, P
    Tosi, MP
    PHYSICA B-CONDENSED MATTER, 2004, 344 (1-4) : 157 - 162
  • [35] Collective modes of an imbalanced unitary Fermi gas
    Hofmann, Johannes
    Chevy, Frederic
    Goulko, Olga
    Lobo, Carlos
    PHYSICAL REVIEW A, 2018, 97 (03)
  • [36] Quantum Phases of a Two-Dimensional Dipolar Fermi Gas
    Bruun, G. M.
    Taylor, E.
    PHYSICAL REVIEW LETTERS, 2008, 101 (24)
  • [37] Damping of the quadrupole mode in a two-dimensional Fermi gas
    Chiacchiera, Silvia
    Davesne, Dany
    Enss, Tilman
    Urban, Michael
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [38] Observation of a pairing pseudogap in a two-dimensional Fermi gas
    Feld, Michael
    Froehlich, Bernd
    Vogt, Enrico
    Koschorreck, Marco
    Koehl, Michael
    NATURE, 2011, 480 (7375) : 75 - U233
  • [39] Applicability of the Boltzmann equation for a two-dimensional Fermi gas
    Wu, Lei
    Zhang, Yonghao
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [40] Criteria for two-dimensional kinematics in an interacting Fermi gas
    Dyke, P.
    Fenech, K.
    Peppler, T.
    Lingham, M. G.
    Hoinka, S.
    Zhang, W.
    Peng, S. -G.
    Mulkerin, B.
    Hu, H.
    Liu, X. -J.
    Vale, C. J.
    PHYSICAL REVIEW A, 2016, 93 (01)