A comparative analysis of numerical methods of solving the continuation problem for 1D parabolic equation with the data given on the part of the boundary

被引:9
|
作者
Belonosov, Andrey [1 ]
Shishlenin, Maxim [2 ]
Klyuchinskiy, Dmitriy [1 ]
机构
[1] Novosibirsk State Univ, Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Sobolev Inst Math, Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Parabolic equation; Continuation problem; Numerical methods; Finite-difference scheme inversion; Singular value decomposition; Gradient method;
D O I
10.1007/s10444-018-9631-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The ill-posed continuation problem for the one-dimensional parabolic equation with the data given on the part of the boundary is investigated. We prove the uniqueness theorem about the solution of the continuation problem. The finite-difference scheme inversion, the singular value decomposition, and gradient type method are numerically compared. The influence of a noisy data on the solution is presented.
引用
收藏
页码:735 / 755
页数:21
相关论文
共 50 条
  • [21] An efficient numerical scheme for 1D parabolic singularly perturbed problems with an interior and boundary layers
    Clavero, C.
    Gracia, J. L.
    Shishkin, G. I.
    Shishkina, L. P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 318 : 634 - 645
  • [22] A data-driven approach to solving a 1D inverse scattering problem
    van Leeuwen, Tristan
    Tataris, Andreas
    AIP ADVANCES, 2023, 13 (06)
  • [23] Analysis of Numerical Methods Suitable for 1D Simulation of Thermosyphons
    Vach, M.
    Knizat, B.
    Mlynar, P.
    38TH MEETING OF DEPARTMENTS OF FLUID MECHANICS AND THERMODYNAMICS, 2019, 2118
  • [24] Comparative Analysis of Methods for Regularizing an Initial Boundary Value Problem for the Helmholtz Equation
    Kabanikhin, Sergey Igorevich
    Shishlenin, M. A.
    Nurseitov, D. B.
    Nurseitova, A. T.
    Kasenov, S. E.
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [25] COMPARATIVE ANALYSIS OF TWO NUMERICAL METHODS FOR SOLVING THE GELFAND-LEVITAN-KREIN EQUATION
    Shishlenin, M. A.
    Novikov, N. S.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2011, 8 : C379 - C393
  • [26] Error Analysis and Comparative Study of Numerical Methods for the Parabolic Equation Applied to Tunnel Propagation Modeling
    Zhang, Xingqi
    Sarris, Costas D.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (07) : 3025 - 3034
  • [27] The High Order Method with Discrete TBCs for Solving the Cauchy Problem for the 1D Schrodinger Equation
    Zlotnik, Alexander
    Zlotnik, Ilya
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2015, 15 (02) : 233 - 245
  • [28] RELIABLE ITERATIVE METHODS FOR SOLVING 1D, 2D AND 3D FISHER'S EQUATION
    Salih, Othman Mahdi
    Al-Jawary, Majeed Ahmed
    IIUM ENGINEERING JOURNAL, 2021, 22 (01): : 138 - 167
  • [29] Local Null Controllability of a Free-Boundary Problem for the Semilinear 1D Heat Equation
    Fernandez-Cara, Enrique
    de Sousa, Ivaldo Tributino
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (02): : 303 - 315
  • [30] On the Controllability of a Free-Boundary Problem for 1D Heat Equation with Local and Nonlocal Nonlinearities
    V. Costa
    J. Límaco
    A. R. Lopes
    L. Prouvée
    Applied Mathematics & Optimization, 2023, 87