Pseudorandomness of the Ostrowski sum-of-digits function

被引:2
|
作者
Spiegelhofer, Lukas [1 ]
机构
[1] Vienna Univ Technol, Inst Discrete Math & Geometry, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
来源
基金
奥地利科学基金会;
关键词
Ostrowski numeration; pseudorandomness; Fourier-Bohr spectrum;
D O I
10.5802/jtnb.1042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an irrational alpha is an element of(0, 1), we investigate the Ostrowski sum-of-digits function sigma(alpha). For alpha having bounded partial quotients and theta is an element of R \ Z, we prove that the function g : n bar right arrow e(theta sigma(alpha)(n)), where e(x) = e(2 pi ix), is pseudorandom in the following sense: for all r is an element of N the limit gamma(r) = lim(N ->infinity) 1/N Sigma(0 <= n<N) g(n + r)<(g(n))over bar> exists and we have lim(R ->infinity) 1/R Sigma(0 <= r<R) vertical bar gamma(r)vertical bar(2) = 0.
引用
收藏
页码:637 / 649
页数:13
相关论文
共 50 条