Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide

被引:125
|
作者
Sivaraman, Ganesh [1 ]
Krishnamoorthy, Anand Narayanan [2 ,3 ]
Baur, Matthias [2 ]
Holm, Christian [2 ]
Stan, Marius [4 ]
Csanyi, Gabor [5 ]
Benmore, Chris [6 ]
Vazquez-Mayagoitia, Alvaro [7 ]
机构
[1] Argonne Natl Lab, Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Univ Stuttgart, Inst Computat Phys, Allmandring 3, D-70569 Stuttgart, Germany
[3] Forschungszentrum Julich, Helmholtz Inst Munster Ion Energy Storage IEK 12, Corrensstr 46, D-48149 Munster, Germany
[4] Argonne Natl Lab, Appl Mat Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[5] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[6] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[7] Argonne Natl Lab, Computat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
MOLECULAR-DYNAMICS; COEFFICIENTS; ACCURATE;
D O I
10.1038/s41524-020-00367-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose an active learning scheme for automatically sampling a minimum number of uncorrelated configurations for fitting the Gaussian Approximation Potential (GAP). Our active learning scheme consists of an unsupervised machine learning (ML) scheme coupled with a Bayesian optimization technique that evaluates the GAP model. We apply this scheme to a Hafnium dioxide (HfO2) dataset generated from a "melt-quench" ab initio molecular dynamics (AIMD) protocol. Our results show that the active learning scheme, with no prior knowledge of the dataset, is able to extract a configuration that reaches the required energy fit tolerance. Further, molecular dynamics (MD) simulations performed using this active learned GAP model on 6144 atom systems of amorphous and liquid state elucidate the structural properties of HfO(2)with near ab initio precision and quench rates (i.e., 1.0 K/ps) not accessible via AIMD. The melt and amorphous X-ray structural factors generated from our simulation are in good agreement with experiment. In addition, the calculated diffusion constants are in good agreement with previous ab initio studies.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Construction of Machine Learning Interatomic Potentials for Metals
    S. V. Dmitriev
    A. A. Kistanov
    I. V. Kosarev
    S. A. Scherbinin
    A. V. Shapeev
    Russian Physics Journal, 2024, 67 (9) : 1408 - 1413
  • [42] Machine Learning Interatomic Potentials for Heterogeneous Catalysis
    Tang, Deqi
    Ketkaew, Rangsiman
    Luber, Sandra
    CHEMISTRY-A EUROPEAN JOURNAL, 2024,
  • [43] A Genetic Algorithm Trained Machine-Learned Interatomic Potential for the Silicon-Carbon System
    MacIsaac, Michael
    Bavdekar, Salil
    Spearot, Douglas
    Subhash, Ghatu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (29): : 12213 - 12226
  • [44] Active Probing for Improved Machine-Learned Recognition of Network Traffic
    Anvari, Hamidreza
    Lu, Paul
    MACHINE LEARNING FOR NETWORKING, MLN 2020, 2021, 12629 : 122 - 140
  • [45] Exploring the configurational space of amorphous graphene with machine-learned atomic energies
    El-Machachi, Zakariya
    Wilson, Mark
    Deringer, Volker L.
    CHEMICAL SCIENCE, 2022, 13 (46) : 13720 - 13731
  • [46] Phase Transitions in Inorganic Halide Perovskites from Machine-Learned Potentials
    Fransson, Erik
    Wiktor, Julia
    Erhart, Paul
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (28): : 13773 - 13781
  • [47] Accurate nuclear quantum statistics on machine-learned classical effective potentials
    Zaporozhets, Iryna
    Musil, Felix
    Kapil, Venkat
    Clementi, Cecilia
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (13):
  • [48] Active learning of linearly parametrized interatomic potentials
    Podryabinkin, Evgeny V.
    Shapeev, Alexander V.
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 140 : 171 - 180
  • [49] Machine-learned interatomic potentials for transition metal dichalcogenide Mo1-xWxS2-2ySe2y alloys
    Siddiqui, Anas
    Hine, Nicholas D. M.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [50] High-Accuracy Machine-Learned Interatomic Potentials for the Phase Change Material Ge3Sb6Te5
    Yu, Wei
    Zhang, Zhaofu
    Wan, Xuhao
    Su, Jinhao
    Gui, Qingzhong
    Guo, Hailing
    Zhong, Hong-xia
    Robertson, John
    Guo, Yuzheng
    CHEMISTRY OF MATERIALS, 2023, 35 (17) : 6651 - 6658