Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide

被引:125
|
作者
Sivaraman, Ganesh [1 ]
Krishnamoorthy, Anand Narayanan [2 ,3 ]
Baur, Matthias [2 ]
Holm, Christian [2 ]
Stan, Marius [4 ]
Csanyi, Gabor [5 ]
Benmore, Chris [6 ]
Vazquez-Mayagoitia, Alvaro [7 ]
机构
[1] Argonne Natl Lab, Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Univ Stuttgart, Inst Computat Phys, Allmandring 3, D-70569 Stuttgart, Germany
[3] Forschungszentrum Julich, Helmholtz Inst Munster Ion Energy Storage IEK 12, Corrensstr 46, D-48149 Munster, Germany
[4] Argonne Natl Lab, Appl Mat Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[5] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[6] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[7] Argonne Natl Lab, Computat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
MOLECULAR-DYNAMICS; COEFFICIENTS; ACCURATE;
D O I
10.1038/s41524-020-00367-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose an active learning scheme for automatically sampling a minimum number of uncorrelated configurations for fitting the Gaussian Approximation Potential (GAP). Our active learning scheme consists of an unsupervised machine learning (ML) scheme coupled with a Bayesian optimization technique that evaluates the GAP model. We apply this scheme to a Hafnium dioxide (HfO2) dataset generated from a "melt-quench" ab initio molecular dynamics (AIMD) protocol. Our results show that the active learning scheme, with no prior knowledge of the dataset, is able to extract a configuration that reaches the required energy fit tolerance. Further, molecular dynamics (MD) simulations performed using this active learned GAP model on 6144 atom systems of amorphous and liquid state elucidate the structural properties of HfO(2)with near ab initio precision and quench rates (i.e., 1.0 K/ps) not accessible via AIMD. The melt and amorphous X-ray structural factors generated from our simulation are in good agreement with experiment. In addition, the calculated diffusion constants are in good agreement with previous ab initio studies.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide
    Ganesh Sivaraman
    Anand Narayanan Krishnamoorthy
    Matthias Baur
    Christian Holm
    Marius Stan
    Gábor Csányi
    Chris Benmore
    Álvaro Vázquez-Mayagoitia
    npj Computational Materials, 6
  • [2] Multikernel similarity-based clustering of amorphous systems and machine-learned interatomic potentials by active learning
    Shuaib, Firas
    Ori, Guido
    Thomas, Philippe
    Masson, Olivier
    Bouzid, Assil
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024,
  • [3] How to validate machine-learned interatomic potentials
    Morrow, Joe D.
    Gardner, John L. A.
    Deringer, Volker L.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (12):
  • [4] A FRAMEWORK FOR A GENERALIZATION ANALYSIS OF MACHINE-LEARNED INTERATOMIC POTENTIALS
    Ortner, Christoph
    Wang, Yangshuai
    MULTISCALE MODELING & SIMULATION, 2023, 21 (03): : 1053 - 1080
  • [5] Simple machine-learned interatomic potentials for complex alloys
    Byggmastar, J.
    Nordlund, K.
    Djurabekova, F.
    PHYSICAL REVIEW MATERIALS, 2022, 6 (08)
  • [6] Machine-learned interatomic potentials: Recent developments and prospective applications
    Eyert, Volker
    Wormald, Jonathan
    Curtin, William A.
    Wimmer, Erich
    JOURNAL OF MATERIALS RESEARCH, 2023, 38 (24) : 5079 - 5094
  • [7] Machine-learned interatomic potentials for alloys and alloy phase diagrams
    Rosenbrock, Conrad W.
    Gubaev, Konstantin
    Shapeev, Alexander V.
    Partay, Livia B.
    Bernstein, Noam
    Csanyi, Gabor
    Hart, Gus L. W.
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [8] Machine-learned interatomic potentials: Recent developments and prospective applications
    Volker Eyert
    Jonathan Wormald
    William A. Curtin
    Erich Wimmer
    Journal of Materials Research, 2023, 38 : 5079 - 5094
  • [9] Machine-learned interatomic potentials for alloys and alloy phase diagrams
    Conrad W. Rosenbrock
    Konstantin Gubaev
    Alexander V. Shapeev
    Livia B. Pártay
    Noam Bernstein
    Gábor Csányi
    Gus L. W. Hart
    npj Computational Materials, 7
  • [10] Nature of the Amorphous-Amorphous Interfaces in Solid-State Batteries Revealed Using Machine-Learned Interatomic Potentials
    Wang, Chuhong
    Aykol, Muratahan
    Mueller, Tim
    CHEMISTRY OF MATERIALS, 2023, 35 (16) : 6346 - 6356