On updating torsion angles of molecular conformations

被引:11
|
作者
Choi, V [1 ]
机构
[1] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA
关键词
D O I
10.1021/ci050253h
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
A conformation of a molecule is defined by the relative positions of atoms and by the chirality of asymmetric atoms in the molecule. The three main representations for conformations of molecules are Cartesian coordinates, a distance geometry descriptor (which consists of a distance matrix and the signs of the volumes of quadruples of atoms), and internal coordinates. In biochemistry, conformational changes of a molecule are usually described in terms of internal coordinates. However, for many applications, such as molecular docking, the Cartesian coordinates of atoms are needed for computation. Although, for each conformational change, the Cartesian coordinates of atoms can be updated in linear time (which is optimal asymptotically), the constant factor becomes significant if a large number of updates are needed. Zhang and Kavraki (J. Chem. Inf. Comput. Sci. 2002, 42, 64-70) examined three methods: the simple rotations, the DenavitHartenberg local frames, and the atom-group local frames. On the basis of their implementations, they showed that the atom-group local frames are more efficient than the other two. In this paper, by expressing the torsion-angle change as a composition of translations and rotations, we observe that the simple rotations can be implemented in an efficient way by taking advantage of consecutive operations. Both quantitative and experimental comparisons show that the improved simple rotations, in which rotations are expressed in unit quaternions, are as efficient as the atom-group local frames and, thus, have the advantage of avoiding the need of precomputations of a set of local frames and transformations between them.
引用
收藏
页码:438 / 444
页数:7
相关论文
共 50 条
  • [41] MOLECULAR-CONFORMATIONS OF METHOTREXATE
    TOSI, C
    FUSCO, R
    CACCIANOTTI, L
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1989, 52 (3-4): : 361 - 370
  • [42] RELATIONSHIPS BETWEEN THE TORSION ANGLES IN 7-MEMBERED RINGS
    ESTEBAN, AL
    GALIANO, C
    DIEZ, E
    BERMEJO, FJ
    JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1982, (06): : 657 - 662
  • [43] Continuity conditions and torsion angles from ssNMR orientational restraints
    Achuthan, S.
    Asbury, T.
    Hu, J.
    Bertram, R.
    Cross, T. A.
    Quine, J. R.
    JOURNAL OF MAGNETIC RESONANCE, 2008, 191 (01) : 24 - 30
  • [44] Transmembrane helix uniformity examined by spectral mapping of torsion angles
    Page, Richard C.
    Kim, Sanguk
    Cross, Timothy A.
    STRUCTURE, 2008, 16 (05) : 787 - 797
  • [45] A METHOD FOR THE ESTIMATION OF CHI-1 TORSION ANGLES IN PROTEINS
    BARTIK, K
    REDFIELD, C
    JOURNAL OF BIOMOLECULAR NMR, 1993, 3 (04) : 415 - 428
  • [46] Presence of distinct virtual backbone torsion angles in dipeptide conformers
    Gupta, S
    Grail, BM
    Payne, JW
    PROTEIN AND PEPTIDE LETTERS, 2002, 9 (02): : 133 - 138
  • [47] Effective Protein Conformational Sampling based on Predicted Torsion Angles
    Yang, Yuedong
    Zhou, Yaoqi
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2016, 37 (11) : 976 - 980
  • [48] THE USE OF A MIRROR AS AN INSTRUMENT FOR MEASURING TORSION ANGLES OF LONG BONES
    GOLDGEFTER, L
    KOBYLIANSKY, E
    TODER, V
    NATHAN, H
    PHYSICS IN MEDICINE AND BIOLOGY, 1980, 25 (05): : 956 - 956
  • [49] RESTRICTED RESONANCE IN NEW INDOLINES WITH FIXED NITROGEN TORSION ANGLES
    FRITZ, H
    FISCHER, O
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1964, 3 (09) : 647 - &
  • [50] Computational study of the energy of propylcyclohexane as a function of torsion angles.
    Kasner, ML
    Bray, C
    Yokota, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U168 - U168