Robust Stability of Moving Horizon Estimation Under Bounded Disturbances

被引:52
|
作者
Ji, Luo [1 ]
Rawlings, James B. [1 ]
Hu, Wuhua [2 ]
Wynn, Andrew [3 ]
Diehl, Moritz [4 ,5 ]
机构
[1] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Imperial Coll, Dept Aeronaut, London SW7 2AZ, England
[4] Univ Freiburg, Dept Microsyst Engn IMTEK, Freiburg, Germany
[5] KU Leuven Univ, Dept Elect Engn ESAT STADIUS, B-3000 Leuven, Belgium
关键词
Bounded disturbances; constraints; incremental input/output to state stability; moving horizon estimation; nonlinear state estimation; robust global asymptotic stability; TO-STATE STABILITY; NONLINEAR-SYSTEMS;
D O I
10.1109/TAC.2015.2513364
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note proposes a new form of nonlinear state estimator, for which we can establish robust global asymptotic stability in the case of bounded disturbances. In this estimator, a max term is added to the usual sum of stage costs, and one additional assumption is made relating the initial state stage cost to the system's detectability condition. A simulation example is presented to illustrate the estimator's performance. Two open issues are presented: (i) the proof of estimator convergence for convergent disturbances and (ii) changing from full information estimation to moving horizon estimation, which has a smaller and more tractable online computational complexity.
引用
收藏
页码:3509 / 3514
页数:6
相关论文
共 50 条
  • [41] Anytime Proximity Moving Horizon Estimation: Stability and Regret for Nonlinear Systems
    Gharbi, Meriem
    Gharesifard, Bahman
    Ebenbauer, Christian
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 728 - 735
  • [42] A Probabilistic Framework for Moving-Horizon Estimation: Stability and Privacy Guarantees
    Krishnan, Vishaal
    Martinez, Sonia
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) : 1817 - 1824
  • [43] NONUNIFORM OBSERVABILITY FOR MOVING HORIZON ESTIMATION AND STABILITY WITH RESPECT TO ADDITIVE PERTURBATION
    Flayac E.
    Shames I.
    SIAM Journal on Control and Optimization, 2023, 61 (05) : 3018 - 3050
  • [44] Generic Stability Implication From Full Information Estimation to Moving-Horizon Estimation
    Hu, Wuhua
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (02) : 1164 - 1170
  • [45] A novel dynamic outlier-robust Kalman filter with Moving Horizon Estimation
    Hu, Yue
    Zhou, Weidong
    ISA TRANSACTIONS, 2024, 151 : 164 - 173
  • [46] Moving Horizon Estimation on a Chip
    Dang, Thuy V.
    Ling, K. V.
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 431 - 437
  • [47] Robust moving horizon estimation for nonlinear systems: From perfect to imperfect optimization
    Alessandri, Angelo
    AUTOMATICA, 2025, 175
  • [48] Robust Explicit Moving Horizon Control and Estimation: A Batch Polymerization Case Study
    Sui, Dan
    Feng, Le
    Hovd, Morten
    MODELING IDENTIFICATION AND CONTROL, 2009, 30 (01) : 17 - U27
  • [49] Moving horizon estimation: Error dynamics and bounding error sets for robust control
    Voelker, Anna
    Kouramas, Konstantinos
    Pistikopoulos, Efstratios N.
    AUTOMATICA, 2013, 49 (04) : 943 - 948
  • [50] Metamorphic moving horizon estimation
    Kong, He
    Sukkarieh, Salah
    AUTOMATICA, 2018, 97 : 167 - 171