Geometric properties of boundary sections of solutions to the Monge-Ampere equation and applications

被引:9
|
作者
Le, Nam Q. [2 ,3 ]
Truyen Nguyen [1 ]
机构
[1] Univ Akron, Dept Math, Akron, OH 44325 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Tan Tao Univ, Sch Engn, Long An, Vietnam
基金
美国国家科学基金会;
关键词
Monge-Ampere equation; Engulfing property; Covering theorem; Maximal function; Boundary section; Localization theorem; SCALAR CURVATURE; REGULARITY; METRICS;
D O I
10.1016/j.jfa.2012.10.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish several geometric properties of boundary sections of convex solutions to the Monge-Ampere equation: the engulfing and separating properties and volume estimates. As applications, we prove a covering lemma of Besicovitch type, a covering theorem and a strong type p-p estimate for the maximal function corresponding to boundary sections. Moreover, we show that the Monge-Ampere setting forms a space of homogeneous type. Published by Elsevier Inc.
引用
收藏
页码:337 / 361
页数:25
相关论文
共 50 条