Experimentally determining the exchange parameters of quasi-two-dimensional Heisenberg magnets

被引:106
|
作者
Goddard, P. A. [1 ]
Singleton, J. [2 ]
Sengupta, P. [2 ,3 ]
McDonald, R. D. [2 ]
Lancaster, T. [1 ]
Blundell, S. J. [1 ]
Pratt, F. L. [4 ]
Cox, S. [2 ]
Harrison, N. [2 ]
Manson, J. L. [5 ]
Southerland, H. I.
Schlueter, J. A. [6 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[2] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Rutherford Appleton Lab, ISIS Facil, Chilton OX11 0QX, Oxfordshire, England
[5] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA
[6] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
来源
NEW JOURNAL OF PHYSICS | 2008年 / 10卷
关键词
D O I
10.1088/1367-2630/10/8/083025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Though long-range magnetic order cannot occur at temperatures T > 0 in a perfect two-dimensional ( 2D) Heisenberg magnet, real quasi-2D materials will invariably possess nonzero inter-plane coupling J(perpendicular to) driving the system to order at elevated temperatures. This process can be studied using quantum Monte Carlo calculations. However, it is difficult to test the results of these calculations experimentally since for highly anisotropic materials in which the in-plane coupling is comparable with attainable magnetic fields J(perpendicular to) is necessarily very small and inaccessible directly. In addition, because of the large anisotropy, the Neel temperatures are low and difficult to determine from thermodynamic measurements. Here, we present an elegant method of assessing the calculations via two independent experimental probes: pulsed-field magnetization in fields of up to 85 T, and muon-spin rotation.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Suppression of superconducting parameters by correlated quasi-two-dimensional magnetic fluctuations
    Koshelev, A. E.
    PHYSICAL REVIEW B, 2020, 102 (05)
  • [32] The Temperature Dependence of the Quantum Transition Properties of the Quasi-two-dimensional System in Quasi-two-dimensional Semiconductors
    Lee, S. H.
    Kwon, S. Y.
    Kim, J. G.
    Choi, J. Y.
    Sug, J. Y.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 57 (04) : 1015 - 1019
  • [33] Determining the Structure-Property Relationships of Quasi-Two-Dimensional Semiconductor Nanoplatelets
    Greenwood, Arin R.
    Mazzotti, Sergio
    Norris, David J.
    Galli, Giulia
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (08): : 4820 - 4827
  • [34] Quasi-two-dimensional solitons in ferroelectrics
    Belokonenko M.B.
    Kabakov V.V.
    Russian Physics Journal, 2000, 43 (7) : 537 - 541
  • [35] Binding of quasi-two-dimensional biexcitons
    Birkedal, D
    Singh, J
    Lyssenko, VG
    Erland, J
    Hvam, JM
    PHYSICAL REVIEW LETTERS, 1996, 76 (04) : 672 - 675
  • [36] Quasi-two-dimensional organic superconductors
    Wosnitza, J.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2007, 146 (5-6) : 641 - 667
  • [37] On the structure of quasi-two-dimensional foams
    Cox, S. J.
    Janiaud, E.
    PHILOSOPHICAL MAGAZINE LETTERS, 2008, 88 (9-10) : 693 - 701
  • [38] Condensate in quasi-two-dimensional turbulence
    Musacchio, S.
    Boffetta, G.
    PHYSICAL REVIEW FLUIDS, 2019, 4 (02):
  • [39] Quasi-Two-Dimensional Organic Superconductors
    J. Wosnitza
    Journal of Low Temperature Physics, 2007, 146 : 641 - 667
  • [40] Quasi-two-dimensional acoustic metamaterials
    Torrent, D.
    Gracia-Salgado, R.
    Garcia-Chocano, V. M.
    Cervera, F.
    Sanchez-Dehesa, J.
    PHOTONIC AND PHONONIC PROPERTIES OF ENGINEERED NANOSTRUCTURES IV, 2014, 8994