Wound-healing potential of human umbilical cord blood-derived mesenchymal stromal cells in vitro-a pilot study

被引:25
|
作者
You, Hi-Jin [1 ]
Namgoong, Sik [1 ]
Han, Seung-Kyu [1 ]
Jeong, Seong-Ho [1 ]
Dhong, Eun-Sang [1 ]
Kim, Woo-Kyung [1 ]
机构
[1] Korea Univ, Guro Hosp, Dept Plast Surg, Seoul 152703, South Korea
关键词
fibroblast; human umbilical cord blood stem cells; wound healing; DIABETIC FOOT ULCERS; FRESH FIBROBLAST ALLOGRAFTS; CONTROLLED CLINICAL-TRIAL; STEM-CELLS; BONE-MARROW; DERMAL FIBROBLASTS; EFFICACY; SAFETY; MICE; VIVO;
D O I
10.1016/j.jcyt.2015.06.011
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Background aims. Our previous studies demonstrated that human bone marrow derived mesenchymal stromal cells have great potential for wound healing. However, it is difficult to clinically utilize cultured stem cells. Recently, human umbilical cord blood derived mesenchymal stromal cells (hUCB-MSCs) have been commercialized for cartilage repair as a first cell therapy product that uses allogeneic stem cells. Should hUCB-MSCs have a superior effect on wound healing as compared with fibroblasts, which are the main cell source in current cell therapy products for wound healing, they may possibly replace fibroblasts. The purpose of this in vitro study was to compare the wound-healing activity of hUCB-MSCs with that of fibroblasts. Methods. This study was particularly designed to compare the effect of hUCB-MSCs on diabetic wound healing with those of allogeneic and autologous fibroblasts. Healthy (n = 5) and diabetic (n = 5) fibroblasts were used as the representatives of allogeneic and autologous fibroblasts for diabetic patients in the control group. Human UCB-MSCs (n = 5) were used in the experimental group. Cell proliferation, collagen synthesis and growth factor (basic fibroblast growth factor, vascular endothelial growth factor and transforming growth factor-beta) production were compared among the three cell groups. Results. Human UCB-MSCs produced significantly higher amounts of vascular endothelial growth factor and basic fibroblast growth factor when compared with both fibroblast groups. Human UCB-MSCs were superior to diabetic fibroblasts but not to healthy fibroblasts in collagen synthesis. There were no significant differences in cell proliferation and transforming growth factor-beta production. Conclusions. Human UCB-MSCs may have greater capacity for diabetic wound healing than allogeneic or autologous fibroblasts, especially in angiogenesis.
引用
收藏
页码:1506 / 1513
页数:8
相关论文
共 50 条
  • [21] Approaches for Improved Polymeric Gene Delivery To Umbilical Cord Blood-Derived Mesenchymal Stromal Cells
    Rose, Laura
    Kucharski, Cezary
    Jayasooriya, Dulan
    Marquez-Curtis, Leah A.
    Gul-Uludag, Hilal
    Janowska-Wieczorek, Anna
    Uludag, Hasan
    MOLECULAR THERAPY, 2014, 22 : S134 - S135
  • [22] The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer's disease
    Lee, Hyun Ju
    Lee, Jong Kil
    Lee, Hyun
    Shin, Ji-woong
    Carter, Janet E.
    Sakamoto, Toshiro
    Jin, Hee Kyung
    Bae, Jae-sung
    NEUROSCIENCE LETTERS, 2010, 481 (01) : 30 - 35
  • [23] COMPARISON BETWEEN EFFECTS OF HUMAN UMBILICAL CORD BLOOD-DERIVED MESENCHYMAL STEM CELLS AND HEALTHY FIBROBLASTS ON WOUND HEALING ACTIVITY OF DIABETIC FIBROBLASTS
    Jung, J.
    Han, S.
    WOUND REPAIR AND REGENERATION, 2017, 25 (04) : A36 - A36
  • [24] BLOOD-DERIVED MESENCHYMAL STEM CELLS PROMOTE WOUND HEALING
    Hu, M. S.
    Huang, K.
    Li, S.
    Hu, M.
    Wu, J.
    Longaker, M. T.
    Lorenz, H. P.
    WOUND REPAIR AND REGENERATION, 2014, 22 (02) : A45 - A45
  • [25] Differentiation of cryopreserved human umbilical cord blood-derived stromal cells into cells with an oligodendrocyte phenotype
    Yong-Chun Luo
    Hong-Tian Zhang
    Hao-Yu Cheng
    Zhi-Jun Yang
    Yi-Wu Dai
    Ru-Xiang Xu
    In Vitro Cellular & Developmental Biology - Animal, 2010, 46 : 585 - 589
  • [26] Differentiation of cryopreserved human umbilical cord blood-derived stromal cells into cells with an oligodendrocyte phenotype
    Luo, Yong-Chun
    Zhang, Hong-Tian
    Cheng, Hao-Yu
    Yang, Zhi-Jun
    Dai, Yi-Wu
    Xu, Ru-Xiang
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2010, 46 (07) : 585 - 589
  • [27] Human umbilical cord blood-derived stromal cell, a new resource of feeder layer to expand human umbilical cord blood CD34+ cells in vitro
    Gao, L
    Chen, XH
    Zhang, X
    Liu, Y
    Kong, PY
    Peng, XG
    Liu, L
    Liu, H
    Zeng, DF
    BLOOD CELLS MOLECULES AND DISEASES, 2006, 36 (02) : 322 - 328
  • [28] The Therapeutic Potential of Human Umbilical Cord Mesenchymal Stromal Cells Derived Exosomes for Wound Healing: Harnessing Exosomes as a Cell-free Therapy
    Dehghani, Leila
    Owliaee, Iman
    Sadeghian, Fatemeh
    Shojaeian, Ali
    JOURNAL OF STEM CELLS & REGENERATIVE MEDICINE, 2024, 20 (01): : P14 - P23
  • [29] Investigation of in vitro experimental models for immunogenicity assessment of the of cord blood-derived human multipotent mesenchymal stromal cells
    Catenacci, L.
    Moretta, A.
    Cometa, A.
    Lazzari, L.
    Montemurro, T.
    Giordano, R.
    Malinverno, A.
    Travaglino, P.
    Montagna, D.
    Rubert, L.
    Calafiore, L.
    Zecca, M.
    Maccario, R.
    BONE MARROW TRANSPLANTATION, 2012, 47 : S322 - S323
  • [30] Tumorigenicity evaluation of umbilical cord blood-derived mesenchymal stem cells
    Park S.-J.
    Kim H.-J.
    Kim W.
    Kim O.-S.
    Lee S.
    Han S.-Y.
    Jeong E.J.
    Park H.
    Kim H.-W.
    Moon K.-S.
    Toxicological Research, 2016, 32 (3) : 251 - 258