A Generative Approach for Image-Based Modeling of Tumor Growth

被引:0
|
作者
Menze, Bjoern H. [1 ,2 ]
Van Leemput, Koen [1 ,3 ,4 ]
Honkela, Antti [5 ]
Konukoglu, Ender [6 ]
Weber, Marc-Andre [7 ]
Ayache, Nicholas [2 ]
Golland, Polina [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] INRIA Sophia Antipolis, Asclepios Res Project, F-06902 Valbonne, France
[3] Massachusetts Gen Hosp, Harvard Med Sch, Dept Radiol, Boston, MA USA
[4] Aalto Univ, Dept Informat & Comp Sci, Espoo, Finland
[5] Univ Helsinki, Helsinki Inst Informat Technol HIIT, Helsinki, Finland
[6] Machine Learning & Perception Grp, Microsoft Res, Cambridge, England
[7] Heidelberg Univ Hosp, Dept Diag Radiol, Heidelberg, Germany
来源
INFORMATION PROCESSING IN MEDICAL IMAGING | 2011年 / 6801卷
基金
芬兰科学院;
关键词
BRAIN-TUMORS; DIFFUSION; REGISTRATION; GLIOMAS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Extensive imaging is routinely used in brain tumor patients to monitor the state of the disease and to evaluate therapeutic options. A large number of multi-modal and multi-temporal image volumes is acquired in standard clinical cases, requiring new approaches for comprehensive integration of information from different image sources and different time points. In this work we propose a joint generative model of tumor growth and of image observation that naturally handles multi-modal and longitudinal data. We use the model for analyzing imaging data in patients with glioma. The tumor growth model is based on a reaction-diffusion framework. Model personalization relies only on a forward model for the growth process and on image likelihood. We take advantage of an adaptive sparse grid approximation for efficient inference via Markov Chain Monte Carlo sampling. The approach can be used for integrating information from different multi-modal imaging protocols and can easily be adapted to other tumor growth models.
引用
收藏
页码:735 / 747
页数:13
相关论文
共 50 条
  • [31] Image-based procedural modeling of facades
    Mueller, Pascal
    Zeng, Gang
    Wonka, Peter
    Van Gool, Luc
    ACM TRANSACTIONS ON GRAPHICS, 2007, 26 (03):
  • [32] Image-Based Modeling by Joint Segmentation
    Long Quan
    Jingdong Wang
    Ping Tan
    Lu Yuan
    International Journal of Computer Vision, 2007, 75 : 135 - 150
  • [33] Image-based modeling, rendering, and lighting
    Debevec, P
    McMillan, L
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2002, 22 (02) : 24 - 25
  • [34] Image-based modeling by joint segmentation
    Quan, Long
    Wang, Jingdong
    Tan, Ping
    Yuan, Lu
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 75 (01) : 135 - 150
  • [35] Image-based procedure for biostructure modeling
    Yang, Judy P. (jpyang@nctu.edu.tw), 1600, American Society of Civil Engineers (ASCE), United States (04):
  • [36] Fundamentals and Challenges of Generative Adversarial Networks for Image-based Applications
    Trevisan de Souza, Vinicius Luis
    Dorta Marques, Bruno Augusto
    Gois, Joao Paulo
    2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022), 2022, : 308 - 313
  • [37] Image-Based Generative Artificial Intelligence in Radiology: Comprehensive Updates
    Jung, Ha Kyung
    Kim, Kiduk
    Park, Ji Eun
    Kim, Namkug
    KOREAN JOURNAL OF RADIOLOGY, 2024, 25 (11) : 959 - 981
  • [38] Personalized image-based tumor growth prediction in a convection–diffusion–reaction model
    Nargess Meghdadi
    M. Soltani
    Hanieh Niroomand-Oscuii
    Nooshin Yamani
    Acta Neurologica Belgica, 2020, 120 : 49 - 57
  • [39] An engineering approach to image-based phenotyping
    Johnson, GA
    Cofer, GP
    Gewalt, SL
    Hedlund, LW
    2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, 2002, : 381 - 383
  • [40] Calibration and Assessment of Multitemporal Image-based Cellular Automata for Urban Growth Modeling
    Alkheder, Sharaf
    Shan, Jie
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2008, 74 (12): : 1539 - 1550