A fuzzy k-modes algorithm for clustering categorical data

被引:283
|
作者
Huang, ZX [1 ]
Ng, MK
机构
[1] Management Informat Principles Ltd, Melbourne, Vic, Australia
[2] Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
关键词
categorical data; clustering; data mining; fuzzy partitioning; k -means algorithm;
D O I
10.1109/91.784206
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This correspondence describes extensions to the fuzzy k-means algorithm for clustering categorical data. By using a simple matching dissimilarity measure for categorical objects and modes instead of means for clusters, a new approach is developed, which allows the use of the k-means paradigm to efficiently cluster large categorical data sets. A fuzzy k-modes algorithm is presented and the effectiveness of the algorithm is demonstrated with experimental results.
引用
收藏
页码:446 / 452
页数:7
相关论文
共 50 条
  • [41] Computation of Initial Modes for K-modes Clustering Algorithm using Evidence Accumulation
    Khan, Shehroz S.
    Kant, Shri
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2784 - 2789
  • [42] Approximation algorithms for K-modes clustering
    He, Zengyou
    Deng, Shengchun
    Xu, Xiaofei
    [J]. COMPUTATIONAL INTELLIGENCE, PT 2, PROCEEDINGS, 2006, 4114 : 296 - 302
  • [43] A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data
    Ji, Jinchao
    Pang, Wei
    Zhou, Chunguang
    Han, Xiao
    Wang, Zhe
    [J]. KNOWLEDGE-BASED SYSTEMS, 2012, 30 : 129 - 135
  • [44] Software cost estimation based on modified K-Modes clustering Algorithm
    Bishnu, Partha Sarathi
    Bhattacherjee, Vandana
    [J]. NATURAL COMPUTING, 2016, 15 (03) : 415 - 422
  • [45] A Global-Relationship Dissimilarity Measure for the k-Modes Clustering Algorithm
    Zhou, Hongfang
    Zhang, Yihui
    Liu, Yibin
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [46] Software cost estimation based on modified K-Modes clustering Algorithm
    Partha Sarathi Bishnu
    Vandana Bhattacherjee
    [J]. Natural Computing, 2016, 15 : 415 - 422
  • [47] Attribute weights-based clustering centres algorithm for initialising K-modes clustering
    Liwen Peng
    Yongguo Liu
    [J]. Cluster Computing, 2019, 22 : 6171 - 6179
  • [48] Attribute weights-based clustering centres algorithm for initialising K-modes clustering
    Peng, Liwen
    Liu, Yongguo
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 3): : S6171 - S6179
  • [49] k-mw-modes: An algorithm for clustering categorical matrix-object data
    Cao, Fuyuan
    Yu, Liqin
    Huang, Joshua Zhexue
    Liang, Jiye
    [J]. APPLIED SOFT COMPUTING, 2017, 57 : 605 - 614
  • [50] A Modified Initialization Method to Find an Initial Center for Fuzzy K-Modes Clustering
    Saranya, S.
    Jayanthi, P.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNIQUES IN CONTROL, OPTIMIZATION AND SIGNAL PROCESSING (INCOS), 2017,