On Measures of Classicality/Quantumness in Quasiprobability Representations of Finite-Dimensional Quantum Systems

被引:2
|
作者
Abbasli, N. [1 ,2 ]
Abgaryan, V. [1 ,3 ,4 ]
Bures, M. [1 ,5 ]
Khvedelidze, A. [1 ,6 ,7 ]
Rogojin, I. [1 ]
Torosyan, A. [1 ]
机构
[1] JINR, Lab Informat Technol, Dubna, Russia
[2] Azerbaijan Natl Acad Sci, Inst Phys, Baku, Azerbaijan
[3] Alikhanyan Natl Sci Lab YerPHI, Yerevan, Armenia
[4] RUDN Univ, Peoples Friendship Univ Russia, Moscow 117198, Russia
[5] Czech Tech Univ, Inst Expt & Appl Phys, Prague, Czech Republic
[6] TSU, A Razmadze Math Inst, Tbilisi, Georgia
[7] GTU, Inst Quantum Phys & Engn Technol, Tbilisi, Georgia
关键词
D O I
10.1134/S1063779620040024
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In the present report we discuss measures of classicality/quantumness of states of finite-dimensional quantum systems, which are based on a deviation of quasiprobability distributions from true statistical distributions. Particularly, the dependence of the global indicator of classicality on the assigned geometry of a quantum state space is analysed for a whole family of Wigner quasiprobability representations. General considerations are exemplified by constructing the global indicator of classicality/quantumness for the Hilbert-Schmidt, Bures and Bogoliubov-Kubo-Mori ensembles of qubits and qutrits.
引用
收藏
页码:443 / 447
页数:5
相关论文
共 50 条
  • [21] Finite-dimensional representations of a shock algebra
    Eugene R. Speer
    Journal of Statistical Physics, 1997, 89 : 169 - 175
  • [22] QUASIDISTRIBUTIONS AND COHERENT STATES FOR FINITE-DIMENSIONAL QUANTUM SYSTEMS
    Marchiolli, M. A.
    Ruzzi, M.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2011, 32 (04) : 381 - 392
  • [23] Wavefunction controllability for finite-dimensional bilinear quantum systems
    Turinici, G
    Rabitz, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (10): : 2565 - 2576
  • [24] Dimensions, lengths, and separability in finite-dimensional quantum systems
    Chen, Lin
    Dokovic, Dragomir Z.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)
  • [25] INDIRECT QUANTUM CONTROL FOR FINITE-DIMENSIONAL COUPLED SYSTEMS
    Nie, J.
    Fu, H. C.
    Yi, X. X.
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (1-2) : 87 - 96
  • [26] Hudson's theorem for finite-dimensional quantum systems
    Gross, D.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (12)
  • [27] Rapid Lyapunov control of finite-dimensional quantum systems
    Kuang, Sen
    Dong, Daoyi
    Petersen, Ian R.
    AUTOMATICA, 2017, 81 : 164 - 175
  • [28] Finite-dimensional representations of map superalgebras
    Calixto, Lucas
    Macedo, Tiago
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 676 : 104 - 130
  • [29] Quasidistributions and coherent states for finite-dimensional quantum systems
    M. A. Marchiolli
    M. Ruzzi
    Journal of Russian Laser Research, 2011, 32 : 381 - 392
  • [30] Poles of finite-dimensional representations of Yangians
    Sachin Gautam
    Curtis Wendlandt
    Selecta Mathematica, 2023, 29