A graph-based technique for semi-supervised segmentation of 3D surfaces

被引:10
|
作者
Bergamasco, Filippo [1 ]
Albarelli, Andrea [1 ]
Torsello, Andrea [1 ]
机构
[1] Univ Ca Foscari Venezia, Dipartimento Sci Ambientali Informat & Stat, Venice, Italy
关键词
3D segmentation; Directional curvature metric; Greedy label propagation; OBJECT RECOGNITION; IMAGE SEGMENTATION; MESH; POINT;
D O I
10.1016/j.patrec.2012.03.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A wide range of cheap and simple to use 3D scanning devices has recently been introduced in the market. These tools are no longer addressed to research labs and highly skilled professionals, but rather, they are mostly designed to allow inexperienced users to acquire surfaces and whole objects easily and independently. In this scenario, the demand for automatic or semi-automatic algorithms for 3D data processing is increasing. In this paper we address the task of segmenting the acquired surfaces into perceptually relevant parts. Such a problem is well known to be ill-defined both for 2D images and 3D objects, as even with a perfect understanding of the scene, many different and incompatible semantic or syntactic segmentations can exist together. For this reason recent years have seen a great research effort into semi-supervised approaches, that can make use of small bits of information provided by the user to attain better accuracy. We propose a semi-supervised procedure that exploits an initial set of seeds selected by the user. In our framework segmentation happens by propagating part labels over a weighted graph representation of the surface directly derived from its triangulated Fresh. The assignment of each element is driven by a greedy approach that accounts for the curvature between adjacent triangles. The proposed technique does not require to perform edge detection or to fit propagating surfaces and its implementation is very straightforward. Still, despite its simplicity, tests trade on a standard database of scanned 3D objects show its effectiveness even with moderate user supervision. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2057 / 2064
页数:8
相关论文
共 50 条
  • [41] Toward graph-based semi-supervised face beauty prediction
    Dornaika, Fadi
    Wang, Kunwei
    Arganda-Carreras, Ignacio
    Elorza, Anne
    Moujahid, Abdelmalik
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 142
  • [42] Spectral Graph-Based Semi-supervised Learning for Imbalanced Classes
    Zheng, Q.
    Skillicorn, D. B.
    PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, 2016, : 960 - 967
  • [43] SOME NEW DIRECTIONS IN GRAPH-BASED SEMI-SUPERVISED LEARNING
    Zhu, Xiaojin
    Goldberg, Andrew B.
    Khot, Tushar
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 1504 - 1507
  • [44] Semi-supervised graph-based retargeted least squares regression
    Yuan, Haoliang
    Zheng, Junjie
    Lai, Loi Lei
    Tang, Yuan Yan
    SIGNAL PROCESSING, 2018, 142 : 188 - 193
  • [45] A Flexible Generative Framework for Graph-based Semi-supervised Learning
    Ma, Jiaqi
    Tang, Weijing
    Zhu, Ji
    Mei, Qiaozhu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [46] Time Series Analysis with Graph-based Semi-Supervised Learning
    Xu, Zhao
    Funaya, Koichi
    PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (IEEE DSAA 2015), 2015, : 1100 - 1105
  • [47] Safety-aware Graph-based Semi-Supervised Learning
    Gan, Haitao
    Li, Zhenhua
    Wu, Wei
    Luo, Zhizeng
    Huang, Rui
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 107 : 243 - 254
  • [48] GRAPH-BASED SEMI-SUPERVISED LEARNING WITH MULTI-LABEL
    Zha, Zheng-Jun
    Mei, Tao
    Wang, Jingdong
    Wang, Zengfu
    Hua, Xian-Sheng
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 1321 - +
  • [49] Semi-Supervised Logistic Discrimination Via Graph-Based Regularization
    Kawano, Shuichi
    Misumi, Toshihiro
    Konishi, Sadanori
    NEURAL PROCESSING LETTERS, 2012, 36 (03) : 203 - 216
  • [50] Image colourisation using graph-based semi-supervised learning
    Liu, B. -B.
    Lu, Z. -M.
    IET IMAGE PROCESSING, 2009, 3 (03) : 115 - 120