Genetic analysis and molecular mapping of stripe rust resistance in an excellent wheat line Sanshumai1

被引:8
|
作者
Sun, Cai [1 ,2 ]
Zhang, Peng [1 ]
Fang, Zhengwu [1 ]
Zhang, Xing [1 ]
Yin, Junliang [1 ]
Ma, Dongfang [1 ,2 ]
Zhu, Yongxing [3 ]
机构
[1] Yangtze Univ, Coll Agr, Hubei Collaborat Innovat Ctr Grain Ind, Jingzhou 434025, Peoples R China
[2] Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing 100193, Peoples R China
[3] Yangtze Univ, Coll Hort & Gardening, Jingzhou 434025, Peoples R China
基金
中国国家自然科学基金;
关键词
Puccinia striiformis; Sanshumai; 1; Stripe rust; Molecular mapping; Resistance gene; F-SP TRITICI; QUANTITATIVE TRAIT LOCI; YELLOW RUST; LEAF RUST; RACES; DIVERSITY; DYNAMICS;
D O I
10.1007/s42161-018-0166-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is one of the most widespread diseases in wheat (Triticum aestivum L.). Planting resistant cultivars has been constantly practiced for decades as the best strategy to defense against the variations of prevalent Pst races. The wheat line Sanshumai1 was developed from an interspecific hybridization of Haynaldia villosa (L) Schur. (2n=2x=14, VV)/Triticum turgidum L. var. durum (4n=4x=28, AABB)///Yanxiaomai. Sanshumai1 has all-stage resistance to most of known stripe rust races in China, including three widely virulent races CYR31, CYR32, and CYR33. To identify stripe rust resistance gene in this line, Sanshumai1 was crossed with the susceptible genotype, Mingxian169, and the F-1, F-2, F-3, and BC1 generations were inoculated with Pst races under the controlled greenhouse conditions. The genetic results indicated that two stripe rust resistance genes in Sanshumai1, temporarily designated as YrS1 and YrS2, confer resistance to CYR31 and Su11-11, respectively. Using bulked segregant analysis (BSA) methodology, we identified five simple sequence repeat (SSR) markers and two expressed sequence tag-sequence tagged site (EST-STS) markers associated with YrS1 on the short arm of chromosome 3D. The genetic distances of the two closest flanking markers, namely Xcfd79 and Xwmc674, were 4.1 and 8.7 centiMorgans, respectively. In addition, we identified four SSR markers associated with YrS2 on the long arm of chromosome 4D. The genetic distances of the two closest flanking markers, namely Xcfd84 and Xgwm194, were 6.8 and 7.1 centiMorgans, respectively. Based on the chromosomal location, reaction patterns, and pedigree analysis, these two genes are likely novel resistance genes. These two genes and the flanking markers developed from this study are expected to be useful in pyramiding YrS1 and YrS2 with other Yr genes to develop wheat cultivars with high-level and durable resistance to stripe rust and may also benefit marker assisted selection (MAS) in breeding programs.
引用
收藏
页码:235 / 241
页数:7
相关论文
共 50 条
  • [41] Molecular mapping of a stripe rust resistance gene in Chinese wheat cultivar Mianmai 41
    Ren Yong
    Li Sheng-rong
    Wei Yu-ming
    Zhou Qiang
    Du Xiao-ying
    He Yuan-jiang
    Zheng You-liang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2015, 14 (02) : 295 - 304
  • [42] Molecular Mapping of a Gene for Resistance to Stripe Rust in Wheat Variety PIW138
    YUE Yanli YAO Zhanjun REN Xinxin and WANG Li College of Agronomy Agricultural University of Hebei Baoding PRChina
    Agricultural Sciences in China, 2010, 9 (09) : 1285 - 1291
  • [43] Molecular Mapping of a Gene for Resistance to Stripe Rust in Wheat Variety PIW138
    Yue Yan-li
    Yao Zhan-jun
    Ren Xin-xin
    Wang Li
    AGRICULTURAL SCIENCES IN CHINA, 2010, 9 (09): : 1285 - 1291
  • [45] Molecular cytogenetic identification of a wheat - Thinopyrum ponticum substitution line with stripe rust resistance
    Zhu, Chen
    Wang, Yanzhen
    Chen, Chunhuan
    Wang, Changyou
    Zhang, Aicen
    Peng, Nana
    Wang, Yajuan
    Zhang, Hong
    Liu, Xinlun
    Ji, Wanquan
    GENOME, 2017, 60 (10) : 860 - 867
  • [46] A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega
    Ramburan, VP
    Pretorius, ZA
    Louw, JH
    Boyd, LA
    Smith, PH
    Boshoff, WHP
    Prins, R
    THEORETICAL AND APPLIED GENETICS, 2004, 108 (07) : 1426 - 1433
  • [47] A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega
    V. P. Ramburan
    Z. A. Pretorius
    J. H. Louw
    L. A. Boyd
    P. H. Smith
    W. H. P. Boshoff
    R. Prins
    Theoretical and Applied Genetics, 2004, 108 : 1426 - 1433
  • [48] Genetic analysis of stripe rust resistance in a set of European winter wheat genotypes
    Grover, Gomti
    Sharma, Achla
    Srivastava, Puja
    Kaur, Jaspal
    Bains, N. S.
    EUPHYTICA, 2019, 215 (03)
  • [49] Genetic analysis of stripe rust resistance in a set of European winter wheat genotypes
    Gomti Grover
    Achla Sharma
    Puja Srivastava
    Jaspal Kaur
    N. S. Bains
    Euphytica, 2019, 215
  • [50] Genome-Wide Mapping of Adult Plant Resistance to Leaf Rust and Stripe Rust in CIMMYT Wheat Line Arableu#1
    Yuan, Chan
    Singh, Ravi P.
    Liu, Demei
    Randhawa, Mandeep S.
    Huerta-Espino, Julio
    Lan, Caixia
    PLANT DISEASE, 2020, 104 (05) : 1455 - 1464