Rice ponding date detection in Australia using Sentinel-2 and Planet Fusion imagery

被引:4
|
作者
Brinkhoff, James [1 ]
Houborg, Rasmus [2 ]
Dunn, Brian W. [3 ]
机构
[1] Univ New England, Armidale, NSW 2351, Australia
[2] Planet Labs Inc, San Francisco, CA 94107 USA
[3] NSW Dept Primary Ind, Yanco, NSW 2703, Australia
关键词
Rice; Irrigation management; Remote sensing; Time-series; Logistic regression; WATER-USE; PRODUCTIVITY; IRRIGATION; MANAGEMENT; LANDSAT; GROWTH; YIELD; INDEX;
D O I
10.1016/j.agwat.2022.107907
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Rice is unique, in that yields are maximized when it is grown under ponded (or flooded) conditions. This however has implications for water use (an important consideration in water-scarce environments) and green house gas emissions. This work aimed to provide precise predictions of the date when irrigated rice fields were ponded, on a per-field basis. Models were developed using Sentinel-2 data (with the advantage of inclusion of water-sensitive shortwave infrared bands) and Planet Fusion data (which provides daily, temporally consistent, cross-calibrated, gap-free data). Models were trained with data from both commercial farms and research sites in New South Wales, Australia, and over four growing seasons (harvest in 2018-2021). Predictions were tested on the 2022 harvest season, which included a variety of sowing and water management strategies. A time-series method was developed to provide models with features including satellite observations from before and after the date being classified (as ponded or non-ponded). Logistic regression models using time-series features produced mean absolute errors for ponding date prediction of 4.9 days using Sentinel-2 data, and 4.3 days using Planet Fusion data. The temporal frequency of the Planet Fusion data compensated for the lack of spectral bands relative to Sentinel-2.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Mapping Mediterranean seagrasses with Sentinel-2 imagery
    Traganos, Dimosthenis
    Reinartz, Peter
    MARINE POLLUTION BULLETIN, 2018, 134 : 197 - 209
  • [32] Comparison of Masking Algorithms for Sentinel-2 Imagery
    Zekoll, Viktoria
    Main-Knorn, Magdalena
    Louis, Jerome
    Frantz, David
    Richter, Rudolf
    Pflug, Bringfried
    REMOTE SENSING, 2021, 13 (01) : 1 - 21
  • [33] INTERPRETABLE SCENICNESS FROM SENTINEL-2 IMAGERY
    Levering, Alex
    Marcos, Diego
    Lobry, Sylvain
    Tuia, Devis
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3983 - 3986
  • [34] MF-BHNet: A Hybrid Multimodal Fusion Network for Building Height Estimation Using Sentinel-1 and Sentinel-2 Imagery
    Wang, Siyuan
    Cai, Bowen
    Hou, Dongyang
    Ding, Qing
    Wang, Jiaming
    Shao, Zhenfeng
    IEEE Transactions on Geoscience and Remote Sensing, 2024, 62
  • [35] Automated Mosaicking of Sentinel-2 Satellite Imagery
    Shepherd, James D.
    Schindler, Jan
    Dymond, John R.
    REMOTE SENSING, 2020, 12 (22) : 1 - 14
  • [36] Automation of Surface Karst Assessment Using Sentinel-2 Satellite Imagery
    Drobinina, E. V.
    COSMIC RESEARCH, 2023, 61 (SUPPL 1) : S173 - S181
  • [37] Estimating Aboveground Biomass on Private Forest Using Sentinel-2 Imagery
    Askar
    Nuthammachot, Narissara
    Phairuang, Worradorn
    Wicaksono, Pramaditya
    Sayektiningsih, Tri
    JOURNAL OF SENSORS, 2018, 2018
  • [38] Forage Biomass Estimation Using Sentinel-2 Imagery at High Latitudes
    Peng, Junxiang
    Zeiner, Niklas
    Parsons, David
    Feret, Jean-Baptiste
    Soderstrom, Mats
    Morel, Julien
    REMOTE SENSING, 2023, 15 (09)
  • [39] Estimating Pasture Biomass Using Sentinel-2 Imagery and Machine Learning
    Chen, Yun
    Guerschman, Juan
    Shendryk, Yuri
    Henry, Dave
    Harrison, Matthew Tom
    REMOTE SENSING, 2021, 13 (04) : 1 - 20
  • [40] SEMANTIC SEGMENTATION OF OIL WELL SITES USING SENTINEL-2 IMAGERY
    Wu, Hao
    Dong, Hongli
    Wang, Zhibao
    Bai, Lu
    Huo, Fengcai
    Tao, Jinhua
    Chen, Liangfu
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6901 - 6904