Convergence of p-Stable Random Fractional Wavelet Series and Some of Its Properties

被引:1
|
作者
Medina, Juan Miguel [1 ,2 ]
Ruben Dobarro, Fernando [3 ]
Cernuschi-Frias, Bruno [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ingn, RA-1063 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IAM, Inst Argentino Matemat AP Calderon, RA-1083 Buenos Aires, DF, Argentina
[3] Univ Nacl Tierra Fuego Antartida & Islas Atlantic, Inst Ciencias Polares Ambiente & Recursos Nat, RA-9410 Ushuaia, Argentina
关键词
Fractional processes; wavelets; p-stable random processes;
D O I
10.1109/TIT.2020.2987790
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For appropriate orthonormal wavelet basis {psi(e)(jk)}(j is an element of Zk is an element of Zd e)is an element of({0,1}d), constants p and gamma, if I-gamma denotes the Riesz fractional integral operator of order gamma and (eta(j k e))(j is an element of Zk is an element of Zd e is an element of{0,1}d) a sequence of independent identically distributed symmetric p-stable random variables, we investigate the convergence of the series Sigma(j k e) eta I-j k e(gamma) psi(e)(j k). Similar results are also studied for modified fractional integral operators. Finally, some geometric properties related to self similarity are studied.
引用
收藏
页码:5866 / 5874
页数:9
相关论文
共 50 条