Convergence of p-Stable Random Fractional Wavelet Series and Some of Its Properties

被引:1
|
作者
Medina, Juan Miguel [1 ,2 ]
Ruben Dobarro, Fernando [3 ]
Cernuschi-Frias, Bruno [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ingn, RA-1063 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IAM, Inst Argentino Matemat AP Calderon, RA-1083 Buenos Aires, DF, Argentina
[3] Univ Nacl Tierra Fuego Antartida & Islas Atlantic, Inst Ciencias Polares Ambiente & Recursos Nat, RA-9410 Ushuaia, Argentina
关键词
Fractional processes; wavelets; p-stable random processes;
D O I
10.1109/TIT.2020.2987790
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For appropriate orthonormal wavelet basis {psi(e)(jk)}(j is an element of Zk is an element of Zd e)is an element of({0,1}d), constants p and gamma, if I-gamma denotes the Riesz fractional integral operator of order gamma and (eta(j k e))(j is an element of Zk is an element of Zd e is an element of{0,1}d) a sequence of independent identically distributed symmetric p-stable random variables, we investigate the convergence of the series Sigma(j k e) eta I-j k e(gamma) psi(e)(j k). Similar results are also studied for modified fractional integral operators. Finally, some geometric properties related to self similarity are studied.
引用
收藏
页码:5866 / 5874
页数:9
相关论文
共 50 条
  • [1] Thin sets of integers in harmonic analysis and p-stable random fourier series
    Pascal Lefèvre
    Daniel Li
    Hervé Queffélec
    Luis Rodríguez-Piazza
    Journal d'Analyse Mathématique, 2011, 115 : 187 - 211
  • [2] THIN SETS OF INTEGERS IN HARMONIC ANALYSIS AND p-STABLE RANDOM FOURIER SERIES
    Lefevre, P.
    Li, D.
    Queffelec, H.
    Rodriguez-Piazza, L.
    JOURNAL D ANALYSE MATHEMATIQUE, 2011, 115 : 187 - 211
  • [3] Convergence properties of wavelet series expansions of fractional Brownian motion
    Masry, E
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (03) : 239 - 253
  • [4] CONVERGENCE OF QUADRATIC-FORMS IN P-STABLE RANDOM-VARIABLES AND THETA-P-RADONIFYING OPERATORS
    CAMBANIS, S
    ROSINSKI, J
    WOYCZYNSKI, WA
    ANNALS OF PROBABILITY, 1985, 13 (03): : 885 - 897
  • [5] Wavelet series representation and geometric properties of harmonizable fractional stable sheets
    Ayache, Antoine
    Shieh, Narn-Rueih
    Xiao, Yimin
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (01) : 1 - 23
  • [6] CHARACTERIZATION AND DOMAINS OF ATTRACTION OF P-STABLE RANDOM COMPACT-SETS
    GINE, E
    HAHN, MG
    ANNALS OF PROBABILITY, 1985, 13 (02): : 447 - 468
  • [7] CHARACTERIZATIONS OF ALMOST SURELY CONTINUOUS P-STABLE RANDOM FOURIER-SERIES AND STRONGLY STATIONARY-PROCESSES
    MARCUS, MB
    PISIER, G
    ACTA MATHEMATICA, 1984, 152 (3-4) : 245 - 301
  • [8] A MULTIPLE STOCHASTIC INTEGRAL WITH RESPECT TO A STRICTLY P-STABLE RANDOM MEASURE
    KRAKOWIAK, W
    SZULGA, J
    ANNALS OF PROBABILITY, 1988, 16 (02): : 764 - 777
  • [9] REGULARITY PROPERTIES OF RANDOM WAVELET SERIES
    Esser, Celine
    Jaffard, Stephane
    Vedel, Beatrice
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 110 : 31 - 53
  • [10] Convergence in mean of some random Fourier series
    Dash, Saroj Kumar
    Pattanayak, Swadheenananda
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (01) : 98 - 107