Electrical property of nanocrystalline γ-Fe2O3 under high pressure

被引:2
|
作者
Zhang, Dongmei [1 ,2 ]
Zang, Chunhe [1 ]
Zhang, Yongsheng [1 ]
Han, Yonghao [2 ]
Gao, Chunxiao [2 ]
Yang, Yanxin [1 ]
Yu, Ke [3 ,4 ]
机构
[1] Luoyang Inst Sci & Technol, Dept Math & Phys, Luoyang 471023, Peoples R China
[2] Jilin Univ, Inst Atom & Mol Phys, Natl Lab Superhard Mat, Changchun 130012, Peoples R China
[3] E China Normal Univ, Minist Educ, Key Lab Polar Mat & Devices, Shanghai 200241, Peoples R China
[4] E China Normal Univ, Dept Elect Engn, Shanghai 200241, Peoples R China
关键词
High pressure; Electronic transport; Phase transition; DIAMOND-ANVIL; MAGHEMITE; RESISTIVITY; TRANSITION;
D O I
10.1016/j.physb.2012.01.086
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Using a microcircuit fabricated on a diamond anvil cell, in situ conductivity measurements on nanophase (NP) gamma-Fe2O3 are obtained under high pressure. For NP gamma-Fe2O3, the abrupt increase in electrical conductivity occurs at a pressure of 21.3 GPa, corresponding to a transition from maghemite to hematite. Above 26.4 GPa, conductivity increases smoothly within creasing pressure. No distinct abnormal change is observed during decompression, indicating that transformation is irreversible. The temperature-dependence of the conductivity of NP gamma-Fe2O3 was investigated at several pressures, indicating the electrical conductivity of the sample increases with increasing pressure and temperature, and that are markable phenomenon of discontinuity occurs at 400 K. The abnormal change is attributed to the electronic phase transitions of NP gamma-Fe2O3 due to the variation of inherent cation vacancies. Besides, the temperature-dependence of the electrical conductivity displays semiconductor-like behavior before 33.0 GPa. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1044 / 1046
页数:3
相关论文
共 50 条
  • [41] ELECTRICAL-CONDUCTION IN FE2O3 AND CR2O3
    DECOGAN, D
    LONERGAN, GA
    SOLID STATE COMMUNICATIONS, 1974, 15 (09) : 1517 - 1519
  • [42] High creep strain rates observed in nanocrystalline α-Fe2O3 particles by nanoindentation measurement
    Hajra, P.
    Saha, D. R.
    Mada, M. R.
    Dutta, S.
    Brahma, P.
    Boughton, P.
    Bandyopadhyay, S.
    Chakravorty, D.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 605 : 1 - 7
  • [43] Local structure and spin transition in Fe2O3 hematite at high pressure
    Sanson, Andrea
    Kantor, Innokenty
    Cerantola, Valerio
    Irifune, Tetsuo
    Carnera, Alberto
    Pascarelli, Sakura
    PHYSICAL REVIEW B, 2016, 94 (01)
  • [44] Production of Fe nanoparticles from γ-Fe2O3 by high-pressure hydrogen reduction
    Dirba, I
    Schwoebel, C. A.
    Zintler, A.
    Komissinskiy, P.
    Molina-Luna, L.
    Gutfleisch, O.
    NANOSCALE ADVANCES, 2020, 2 (10): : 4777 - 4784
  • [45] Preparation and magnetic property of Fe2O3 parallelepiped nanocrystals
    Song, Caixia
    Zhang, Yang
    Lin, Yusheng
    Wang, Debao
    MATERIALS LETTERS, 2011, 65 (21-22) : 3195 - 3198
  • [46] Preparation and photocatalytic property of porous α-Fe2O3 nanoflowers
    Wang, Yunan
    Wang, Jianmin
    Deng, Ruiping
    Xv, Shiwei
    Lv, Xin
    Zhou, Jun
    Li, Song
    Cao, Feng
    Qin, Gaowu
    MATERIALS RESEARCH BULLETIN, 2018, 107 : 94 - 99
  • [47] Thermoelectric property of compound-added α-Fe2O3
    Nishiyama, K.
    Kameya, R.
    Teduka, Y.
    Sugihara, S.
    PROCEEDINGS ICT 07: TWENTY-SIXTH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 2008, : 403 - 406
  • [48] Effect of Fe2O3 on the Physical Property of Geopolymer Paste
    Choi, Su-Cheol
    Lee, Woo-Keun
    ADVANCED MATERIALS AND INFORMATION TECHNOLOGY PROCESSING II, 2012, 586 : 126 - 129
  • [49] Mössbauer Studies on Nanocrystalline Diol Capped γ-Fe2O3
    J. Ghose
    K. S. K. Varadwaj
    D. Das
    Hyperfine Interactions, 2004, 156-157 : 63 - 67
  • [50] Nanocrystalline maghemite (γ-Fe2O3) in silica by mechanical activation of precursors
    Xue, JM
    Zhou, ZH
    Wang, J
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2002, 85 (04) : 807 - 811