Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco

被引:96
|
作者
Whitney, SM [1 ]
Andrews, TJ [1 ]
机构
[1] Australian Natl Univ, Res Sch Biol Sci, Mol Plant Physiol, Canberra, ACT 2601, Australia
关键词
D O I
10.1073/pnas.261417298
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The efficiency with which crop plants use their resources of light, water, and fertilizer nitrogen could be enhanced by replacing their CO2-fixing enzyme, D-ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO), with more efficient forms, such as those found in some algae, for example. This important challenge has been frustrated by failure of all previous attempts to substitute a fully functional, foreign RubisCO (efficient or inefficient) into higher plants. This failure could be caused by incompatibility between the plastid-encoded large subunits and the nucleus-encoded small subunits or by inability of the foreign RubisCO subunits to fold or assemble efficiently in the plastid. Mismatch between the regulatory requirements of the foreign RubisCO and conditions in the chloroplast also might render the substituted enzyme inactive but, previously, it has not been possible to test this. To answer the general question of whether a foreign RubisCO can support photosynthesis in a plant, we used plastid transformation to replace RubisCO in tobacco with the simple homodimeric form of the enzyme from the alpha -proteobacterium, Rhodospirillum rubrum, which has no small subunits and no special assembly requirements. The transplastomic plants so obtained are fully autotrophic and reproductive but require CO2 supplementation, consistent with the kinetic properties of the bacterial RubisCO. This establishes that the activity of a RubisCO from a very different phylogeny can be integrated into chloroplast photosynthetic metabolism without prohibitive problems.
引用
收藏
页码:14738 / 14743
页数:6
相关论文
共 50 条
  • [31] Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase
    Spreitzer, RJ
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2003, 414 (02) : 141 - 149
  • [32] RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE-OXYGENASE - ASPECTS AND PROSPECTS
    WILDNER, GF
    PHYSIOLOGIA PLANTARUM, 1981, 52 (03) : 385 - 389
  • [33] SPECIFIC INHIBITION OF OXYGENASE ACTIVITY OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE
    WILDNER, GF
    HENKEL, J
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1976, 69 (01) : 268 - 275
  • [34] Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO): A long-lived protein in the deep ocean
    Orellana, Monica V.
    Hansell, Dennis A.
    LIMNOLOGY AND OCEANOGRAPHY, 2012, 57 (03) : 826 - 834
  • [35] The Mechanism of the Molecular Interaction between Cerium (III) and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco)
    Liu, Chao
    Hong, Fa-shui
    Tao, Ye
    Liu, Tao
    Xie, Ya-ning
    Xu, Jian-hua
    Li, Zhong-rui
    BIOLOGICAL TRACE ELEMENT RESEARCH, 2011, 143 (02) : 1110 - 1120
  • [36] The Mechanism of the Molecular Interaction between Cerium (III) and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco)
    Chao Liu
    Fa-shui Hong
    Ye Tao
    Tao Liu
    Ya-ning Xie
    Jian-hua Xu
    Zhong-rui Li
    Biological Trace Element Research, 2011, 143 : 1110 - 1120
  • [37] Effects of ectopically expressed hyperthermophilic archaeon (Pyrococcus furiosus) ribulose-1,5-bisphosphate carboxylase/oxygenase on tobacco photosynthesis
    Li, X. -G.
    Yang, J.
    Wang, R.
    Tang, X. -F.
    Meng, J. -J.
    Qin, H. -J.
    Liu, X.
    Guo, F.
    Wan, S. -B.
    PHOTOSYNTHETICA, 2013, 51 (03) : 387 - 394
  • [38] CHARACTERIZATION OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE OXYGENASE CARRYING RIBULOSE 1,5-BISPHOSPHATE AT ITS REGULATORY SITES AND THE MECHANISM OF INTERACTION OF THIS FORM OF THE ENZYME WITH RIBULOSE-1,5-BISPHOSPHATE-CARBOXYLASE OXYGENASE ACTIVASE
    YOKOTA, A
    TSUJIMOTO, N
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 204 (02): : 901 - 909
  • [39] RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE OXYGENASE FROM SPINACH, TOMATO, OR TOBACCO-LEAVES
    MCCURRY, SD
    GEE, R
    TOLBERT, NE
    METHODS IN ENZYMOLOGY, 1982, 90 : 515 - 521
  • [40] REDUCTION OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE OXYGENASE CONTENT BY ANTISENSE RNA REDUCES PHOTOSYNTHESIS IN TRANSGENIC TOBACCO PLANTS
    HUDSON, GS
    EVANS, JR
    VONCAEMMERER, S
    ARVIDSSON, YBC
    ANDREWS, TJ
    PLANT PHYSIOLOGY, 1992, 98 (01) : 294 - 302